A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Directional Migration and Distribution of Magnetic Microparticles in Polypropylene-Matrix Magnetic Composites Molded by an Injection Molding Assisted by External Magnetic Field. | LitMetric

Surface-functionalized polymer composites with spherical particles as fillers offer great qualities and have been widely employed in applications of sensors, pharmaceutical industries, anti-icing, and flexible electromagnetic interference shielding. The directional migration and dispersion theory of magnetic microparticles in polypropylene (PP)-matrix magnetic composites must be studied to better acquire the functional surface with remarkable features. In this work, a novel simulation model based on multi-physical field coupling was suggested to analyze the directed migration and distribution of magnetic ferroferric oxide (FeO) particles in injection molding assisted by an external magnetic field using software. To accurately introduce rheological phenomena of polymer melt into the simulation model, the Carreau model was used. Particle size, magnetic field intensity, melt viscosity, and other parameters impacting particle directional motion were discussed in depth. The directional distribution of particles in the simulation model was properly assessed and confirmed by experiment results. This model provides theoretical support for the control, optimization, and investigation of the injection-molding process control of surface-functionalized polymer composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267549PMC
http://dx.doi.org/10.3390/ma15134632DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
simulation model
12
directional migration
8
migration distribution
8
magnetic
8
distribution magnetic
8
magnetic microparticles
8
magnetic composites
8
injection molding
8
molding assisted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!