Quantitative and Qualitative Assessment of Fluorescence in Aesthetic Direct Restorations.

Materials (Basel)

Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania.

Published: June 2022

Currently available direct restoration materials have been developed to have improved optical properties to interact with light in the same manner as the natural tooth. The objective of this study was to investigate the fluorescence of different enamel resin composites. In the present study, nine brands of enamel composites were tested in vitro, some of which are cited by manufacturers as having color adjustment potential. Fluorescence spectra of the composite specimens and the human natural enamel were measured with a fluorescence spectrophotometer immediately after preparation and after 6 months. Qualitative data of the specimens were also collected. Statistical analyses were conducted by Kruskal−Wallis and Mann−Whitney U nonparametric tests (p < 0.05). Almost all tested resin composites presented a significant decrease in the fluorescence values after a period of 6 months. There was no significant decrease in fluorescence in the case of Harmonize™ resin composite samples, which presented the lowest initial fluorescence values. The highest value in the reduction of the initial fluorescence intensity after 6 months (22.95%) was observed for the Charisma® specimens. Composites with a color adjustment did not perform significantly better than other composites in terms of reduction in fluorescence intensity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267933PMC
http://dx.doi.org/10.3390/ma15134619DOI Listing

Publication Analysis

Top Keywords

fluorescence
9
resin composites
8
color adjustment
8
decrease fluorescence
8
fluorescence values
8
initial fluorescence
8
fluorescence intensity
8
composites
5
quantitative qualitative
4
qualitative assessment
4

Similar Publications

In an era of interdisciplinary scientific research, new methodologies are necessary to simultaneously advance several fields of study. One such case involves the measurement of electron spin effects on biological systems. While magnetic effects are well known in biology, recent years have shown a surge in published evidence isolating the dependence on spin, rather than magnetic field, in biological contexts.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.

Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.

View Article and Find Full Text PDF

Molecular glue for phycobilisome attachment to photosystem II in sp. PCC 7002.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.

Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.

View Article and Find Full Text PDF

One of the most obvious manifestations of the negative impact of space flight factors on the human physiology is osteopenia. With the active development of manned space flights and the increase in the duration of humans' persistence in weightlessness, there is a growing need to understand the mechanisms of changes occurring at the cellular level involved in the replenishment of bone tissue. Using the RNA sequencing method, changes in the transcriptome profile of MMSCs were studied after a 5-day simulation of the microgravity effects.

View Article and Find Full Text PDF

Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.

Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!