Biting Innovations of Mosquito-Based Biomaterials and Medical Devices.

Materials (Basel)

Biomedical Engineering Program, Northern Illinois University, DeKalb, IL 60115, USA.

Published: June 2022

Mosquitoes are commonly viewed as pests and deadly predators by humans. Despite this perception, investigations of their survival-based behaviors, select anatomical features, and biological composition have led to the creation of several beneficial technologies for medical applications. In this review, we briefly explore these mosquito-based innovations by discussing how unique characteristics and behaviors of mosquitoes drive the development of select biomaterials and medical devices. Mosquito-inspired microneedles have been fabricated from a variety of materials, including biocompatible metals and polymers, to mimic of the mouthparts that some mosquitoes use to bite a host with minimal injury during blood collection. The salivary components that these mosquitoes use to reduce the clotting of blood extracted during the biting process provide a rich source of anticoagulants that could potentially be integrated into blood-contacting biomaterials or administered in therapeutics to reduce the risk of thrombosis. Mosquito movement, vision, and olfaction are other behaviors that also have the potential for inspiring the development of medically relevant technologies. For instance, viscoelastic proteins that facilitate mosquito movement are being investigated for use in tissue engineering and drug delivery applications. Even the non-wetting nanostructure of a mosquito eye has inspired the creation of a robust superhydrophobic surface coating that shows promise for biomaterial and drug delivery applications. Additionally, biosensors incorporating mosquito olfactory receptors have been built to detect disease-specific volatile organic compounds. Advanced technologies derived from mosquitoes, and insects in general, form a research area that is ripe for exploration and can uncover potential in further dissecting mosquito features for the continued development of novel medical innovations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267633PMC
http://dx.doi.org/10.3390/ma15134587DOI Listing

Publication Analysis

Top Keywords

biomaterials medical
8
medical devices
8
mosquito movement
8
drug delivery
8
delivery applications
8
mosquitoes
5
mosquito
5
biting innovations
4
innovations mosquito-based
4
mosquito-based biomaterials
4

Similar Publications

Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.

J Cardiovasc Transl Res

January 2025

Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.

View Article and Find Full Text PDF

Direct printed aligners (DPAs) offer benefits like the ability to vary layer thickness within a single DPA and to 3D print custom-made removable orthodontic appliances. The biocompatibility of appliances made from Tera Harz TA-28 (Graphy Inc., Seoul, South Korea) depends on strict adherence to a standardized production and post-production protocol, including UV curing.

View Article and Find Full Text PDF

Liquid-based encapsulation for implantable bioelectronics across broad pH environments.

Nat Commun

January 2025

Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.

Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.

View Article and Find Full Text PDF

Antibiotic-free responsive biomaterials for specific and targeted Helicobacter pylori eradication.

J Control Release

January 2025

Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China. Electronic address:

Gastric cancer is highly correlated with Helicobacter pylori (H. pylori) infection. Approximately 50 % of the population worldwide is infected with H.

View Article and Find Full Text PDF

In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!