Magnetic Collapse in FeSe under High Pressure.

Materials (Basel)

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50/38, 660036 Krasnoyarsk, Russia.

Published: June 2022

Electronic structure and magnetic properties of Fe3Se4 are calculated using the density functional approach. Due to the metallic properties, magnetic moments of the iron atoms in two nonequivalent positions in the unit cell are different from ionic values for Fe3+ and Fe2+ and are equal to M1=2.071μB and M2=-2.042μB, making the system ferrimagnetic. The total magnetic moment for the unit cell is 2.135μB. Under isotropic compression, the total magnetic moment decreases non-monotonically and correlates with the non-monotonic dependence of the density of states at the Fermi level N(EF). For 7% compression, the magnetic order changes from the ferrimagnetic to the ferromagnetic. At 14% compression, the magnetic order disappears and the total magnetic moment becomes zero, leaving the system in a paramagnetic state. This compression corresponds to the pressure of 114 GPa. The magnetic ordering changes faster upon application of an isotropic external pressure due to the sizeable anisotropy of the chemical bondings in Fe3Se4. The ferrimagnetic and paramagnetic states occur under pressures of 5.0 and 8.0 GPa, respectively. The system remains in the metallic state for all values of compression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267450PMC
http://dx.doi.org/10.3390/ma15134583DOI Listing

Publication Analysis

Top Keywords

total magnetic
12
magnetic moment
12
magnetic
9
unit cell
8
compression magnetic
8
magnetic order
8
compression
5
magnetic collapse
4
collapse fese
4
fese high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!