Several components are made from Al-Mg-based composites. MoS is used to increase the composite's machinability. Different weight percent (3, 4, and 5) of MoS are added as reinforcement to explore the machinability properties of Al-Mg-reinforced composites. The wire cut electrical discharge machining (WEDM) process is used to study the machinability characteristics of the fabricated Al-Mg-MoS composite. The machined surface's roughness and overcut under different process conditions are discussed. The evaluation-based distance from average solution (EDAS) method is used to identify the optimal setting to get the desired surface roughness and overcut. The following WEDM process parameters are taken to determine the impact of peak current, pulse on time, and gap voltage on surface roughness, and overcut. The WEDM tests were carried out on three different reinforced samples to determine the impact of reinforcement on surface roughness and overcut. The surface roughness and overcut increase as the reinforcement level increases, but the optimal parameters for all three composites are the same. According to EDAS analysis, I, Ton, and V are the best conditions. Furthermore, peak current and pulse on-time significantly influence surface roughness and overcut.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267660PMC
http://dx.doi.org/10.3390/ma15134548DOI Listing

Publication Analysis

Top Keywords

roughness overcut
24
surface roughness
20
machinability characteristics
8
wedm process
8
overcut wedm
8
determine impact
8
peak current
8
current pulse
8
roughness
6
overcut
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!