Numerical Simulation of Stresses in Functionally Graded HCS-MgO Cylinder Using Iterative Technique and Finite Element Method.

Materials (Basel)

Department of Management, Faculty of Economics and Administrative Sciences, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile.

Published: June 2022

In this study, a thick hollow axisymmetric functionally graded (FG) cylinder is investigated for steady-state elastic stresses using an iteration technique and the finite element method. Here, we have considered a functionally graded cylinder tailored with the material property, namely, Young's modulus, varying in an exponential form from the inner to outer radius of the cylinder. A mathematical formulation for stress analysis of functionally graded cylinder under internal and external pressure conditions is developed using constitutive relations for stress-strain, strain-displacement relations and the equation of equilibrium. The effect of the in-homogeneity parameter on radial displacement, radial and tangential stresses in a functionally graded cylinder made up of a High Carbon Steel (HCS) metal matrix, reinforced with Magnesium Oxide (MgO) ceramic is analyzed. The iterative method implemented is fast and converges to the solution which can be further improved by considering a higher number of iterations. This is depicted graphically by using radial displacement and stresses in a pressurized functionally graded cylinder obtained for the first two iterations. An iterative solution for non-FGM (or homogeneous material) is validated using the finite element method. The mechanical responses of the functionally graded cylinder obtained from the iterative method and the finite element method are then compared and found to be in good agreement. Results are presented in graphical and tabular form along with their interpretations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267867PMC
http://dx.doi.org/10.3390/ma15134537DOI Listing

Publication Analysis

Top Keywords

functionally graded
28
graded cylinder
24
finite element
16
element method
16
stresses functionally
8
cylinder
8
cylinder iterative
8
technique finite
8
radial displacement
8
iterative method
8

Similar Publications

Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.

View Article and Find Full Text PDF

Objective: In advanced ovarian cancer, the majority of patients receive anti-angiogenic treatment with bevacizumab. However, its use is often associated with severe side effects, and not all patients benefit from the therapy. Currently, there are no reliable biomarkers to predict response to treatment.

View Article and Find Full Text PDF

CT angiography of acute aortic syndrome in patients with chronic kidney disease.

Int J Cardiovasc Imaging

January 2025

Department of Clinical Radiology, AHEPA University Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece.

The term acute aortic syndrome (AAS) refers to a range of different entities, including dissection, intramural haematoma and penetrating atherosclerotic ulcer. Patients with chronic renal disease and particularly those with dominant polycystic kidney disease are susceptible to this pathology, given the underlying renal arteriopathy and hypertension. Imaging plays a crucial role in diagnosing, grading and guiding management of these patients, with computed tomography angiography (CTA) being on the frontline.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, with increasing global incidence and have poor prognosis. Tumour-infiltrating lymphocytes (TILs) are recognized as a key prognostic indicator and play a vital role in OSCC grading. However, current methods for TILs quantification are based on subjective visual assessments, leading to inter-observer variability and inconsistent diagnostic reproducibility.

View Article and Find Full Text PDF

Introduction: Abnormal cardiorespiratory symptoms and investigative findings in service personnel typically result in prolonged investigation and occupational restriction. This analysis aimed to assess the impact of the xford ilitary Cardiopulmonary xercise Testing linic (OMEC), which investigates such symptoms and findings, on occupational recommendations.

Methods: A service evaluation was conducted on all OMEC attendances over a 5-year period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!