The methane fermentation of organic waste is one way to minimize organic waste, which accounts for 77% of the global municipal waste stream. The use of biochar as an additive for methane fermentation has been shown to increase the production potential of biogas. Sulfur waste has a potential application to synergistic recycling in a form of composites with other materials including biochar. A composite product in the form of a mixture of biochar and molten sulfur has been proposed. In this experiment, additions of the sulfur−biochar composite (SBC) were tested to improve the fermentation process. The biochar was produced from apple chips under the temperature of 500 °C. The ground biochar and sulfur (<1 mm particle size) were mixed in the proportion of 40% biochar and 60% sulfur and heated to 140 °C for sulfur melting. After cooling, the solidified composite was ground. The SBC was added in the dose rate of 10% by dry mass of prepared artificial kitchen waste. Wet anaerobic digestion was carried out in the batch reactors under a temperature of 37 °C for 21 days. As an inoculum, the digestate from Bio-Wat Sp. z. o. o., Świdnica, Poland, was used. The results showed that released biogas reached 672 mL × gvs−1, and the yield was 4% higher than in the variant without the SBC. Kinetics study indicated that the biogas production constant rate reached 0.214 d−1 and was 4.4% higher than in the variant without the SBC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267185 | PMC |
http://dx.doi.org/10.3390/ma15134517 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!