Comparative Analysis of Reconfigurable Platforms for Memristor Emulation.

Materials (Basel)

Faculty of Civil and Mechanical Engineering, Research and Development Directorate, Technical University of Ambato, Ambato 180207, Ecuador.

Published: June 2022

The memristor is the fourth fundamental element in the electronic circuit field, whose memory and resistance properties make it unique. Although there are no electronic solutions based on the memristor, interest in application development has increased significantly. Nevertheless, there are only numerical Matlab or Spice models that can be used for simulating memristor systems, and designing is limited to using memristor emulators only. A memristor emulator is an electronic circuit that mimics a memristor. In this way, a research approach is to build discrete-component emulators of memristors for its study without using the actual models. In this work, two reconfigurable hardware architectures have been proposed for use in the prototyping of a non-linearity memristor emulator: the FPAA (Field Programing Analog Arrays) and the FPGA (Field Programming Gate Array). The easy programming and reprogramming of the first architecture and the performance, high area density, and parallelism of the second one allow the implementation of this type of system. In addition, a detailed comparison is shown to underline the main differences between the two approaches. These platforms could be used in more complex analog and/or digital systems, such as neural networks, CNN, digital circuits, etc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267316PMC
http://dx.doi.org/10.3390/ma15134487DOI Listing

Publication Analysis

Top Keywords

memristor
8
electronic circuit
8
memristor emulator
8
comparative analysis
4
analysis reconfigurable
4
reconfigurable platforms
4
platforms memristor
4
memristor emulation
4
emulation memristor
4
memristor fourth
4

Similar Publications

Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.

View Article and Find Full Text PDF

IMPACT: In-Memory ComPuting Architecture based on Y-FlAsh Technology for Coalesced Tsetlin machine inference.

Philos Trans A Math Phys Eng Sci

January 2025

Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process.

View Article and Find Full Text PDF

Memristive technology mitigates the memory wall issue in von Neumann architectures by enabling in-memory data processing. Unlike traditional complementary metal-oxide semiconductor (CMOS) technology, memristors provide a new paradigm for implementing cryptographic functions and security considerations. While prior research explores memristors for cryptographic functions and side-channel attack vulnerabilities, our study uniquely addresses memristor-oriented countermeasures.

View Article and Find Full Text PDF

Neural reuse can drive organisms to generalize knowledge across various tasks during learning. However, existing devices mostly focus on architectures rather than network functions, lacking the mimic capabilities of neural reuse. Here, we demonstrate a rational device designed based on ferroionic CuInPS, to accomplish the neural reuse function, enabled by dynamic allocation of the ferro-ionic phase.

View Article and Find Full Text PDF

Nonlinear memristive computational spectrometer.

Light Sci Appl

January 2025

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China.

In the domain of spectroscopy, miniaturization efforts often face significant challenges, particularly in achieving high spectral resolution and precise construction. Here, we introduce a computational spectrometer powered by a nonlinear photonic memristor with a WSe homojunction. This approach overcomes traditional limitations, such as constrained Fermi level tunability, persistent dark current, and limited photoresponse dimensionality through dynamic energy band modulation driven by palladium (Pd) ion migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!