Understanding the deformation mechanism of cementite such as on a slip plane is important with regard to revealing and improving the mechanical property of steels. However, the deformation behavior of cementite has not been well investigated because of the difficulty of sample preparation given the single phase structure of cementite. In this study, by fabricating bulk single phase cementite samples using the method developed by the authors, the deformation texture formed by uniaxial compression was investigated using both electron back scatter diffraction and neutron diffraction. The fabricated sample had a random texture before the compression. After applying a compressive strain of 0.5 at 833 K, (010) fiber texture was formed along the compressive axis. It has been suggested from this trend that the primary slip plane of cementite is (010).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267648 | PMC |
http://dx.doi.org/10.3390/ma15134485 | DOI Listing |
Food Chem
January 2025
College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; College of Life Science, Sichuan Normal University, Chengdu 610101, PR China. Electronic address:
Reconstituted noodles containing multi-grain are superior to plain noodles in terms of health benefits, but their lower gluten levels cause deterioration in cooking performance and textural quality. To this end, this study investigated the efficacy of gluten pre-hydration in a model dough. The results indicated that, with the increase in the ratio of pre-hydrated gluten, the final hydration level of gluten in reconstituted noodles, the proportion of ordered secondary structures of gluten, and the intensities of molecular interactions continuously increased, resulting in a more compact gluten network.
View Article and Find Full Text PDFComput Biol Med
January 2025
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, China. Electronic address:
With the advent of the deep learning-based colonoscopy system, the need for a vast amount of high-quality colonoscopy image datasets for training is crucial. However, the generalization ability of deep learning models is challenged by the limited availability of colonoscopy images due to regulatory restrictions and privacy concerns. In this paper, we propose a method for rendering high-fidelity 3D colon models and synthesizing diversified colonoscopy images with abnormalities such as polyps, bleeding, and ulcers, which can be used to train deep learning models.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Scientis SA, Geneva, Switzerland.
Background: Skin aging is inevitable. Wrinkles, skin texture abnormalities, senile hyperpigmentation, loss of skin tone, dryness, atrophy, and telangiectasias represent some of the hallmarks of aged skin. Skin rejuvenation can be addressed by topical therapies, such as topical retinoids and antioxidants or physical modalities with energy-based devices, all providing acceptable outcomes.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Roll Composite Materials, Sinosteel Xing Tai Mechanical Roll Co., Ltd., No. 1 Xinxing West Street, Xingtai 054000, China.
Composite roll produced through casting methods typically remain in the as-cast state after forming. During the preparation process, extended exposure to high temperatures often results in microstructural coarsening at the interface and surface layers, restricting their mechanical performance. To overcome this limitation, we developed a novel vacuum billet forging process for the fabrication of composite rolls.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Water Relations and Field Irrigation, Agricultural and Biological Research institute, National Research Centre, Giza, Egypt.
This study aimed to predict the toughness of date palm fruit (Barhi, Saqie, and Khodry varieties) at different ripening stages (Khalal, Rutab, and Tamar) using Hertz Theory by evaluating the physical and mechanical characteristics of the fruits. Physical measurements revealed that high moisture content in the Khalal stage led to larger dimensions and mass across all varieties, with Barhi dates showing a moisture content of 63.31%, which decreased to 32.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!