Nonylphenol (NP) is considered to be an environmentally toxic, endocrine-disrupting chemical that affects humans and ecosystems. Adsorption is one of the most promising approaches for the removal of nonylphenol contamination from water. Herein, in order to design an adsorbent with high adsorption capacity, magnesium silicate with different Mg/Si ratios was successfully synthesized by a sol-gel method at 60 °C. Magnesium silicate with a Mg/Si ratio of 1:6 was found to possess the best adsorption performance, with maximum 4-NP sorption 30.84 mg/g under 25 °C and 0.2 g/L adsorbent dose. The adsorption was negatively affected by increasing adsorbent dose and temperature. The kinetics and isotherm of 4-NP adsorption by Mg/Si were well described by the pseudo-second-order and Sips model, respectively, and behavior was proven to be physisorption-enhanced by a chemical effect. Detailed characterization by XRD, BET, and SEM confirmed that the magnesium silicate possesses an amorphous, mesoporous structure. The study will contribute to the applicability of cheap magnesium silicate for removal of NP contamination in water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267514PMC
http://dx.doi.org/10.3390/ma15134445DOI Listing

Publication Analysis

Top Keywords

magnesium silicate
20
contamination water
12
removal nonylphenol
8
nonylphenol contamination
8
silicate mg/si
8
adsorbent dose
8
magnesium
5
silicate
5
adsorption
5
efficient removal
4

Similar Publications

TBAT-Catalyzed Dioxasilinane Formation from Beta-Hydroxy Ketones.

Tetrahedron

February 2025

Department of Chemistry, Western Washington University, Bellingham, WA 98225 (USA).

Beta-hydroxy ketones can be reduced using a sequence of ruthenium-catalyzed silyl etherification followed by tetrabutylammonium fluoride (TBAF) promoted intramolecular hydrosilylation. Switching from TBAF to tetrabutylammonium difluorotriphenylsilicate (TBAT), even without first forming the silyl ether, gave cyclic dioxasilinane products. These somewhat sensitive compounds could be isolated pure by column chromatography using florisil as the stationary phase.

View Article and Find Full Text PDF

A multifunctional quasi-solid-state polymer electrolyte with highly selective ion highways for practical zinc ion batteries.

Nat Commun

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

The uncontrolled dendrite growth and detrimental parasitic reactions of Zn anodes currently impede the large-scale implementation of aqueous zinc ion batteries. Here, we design a versatile quasi-solid-state polymer electrolyte with highly selective ion transport channels via molecular crosslinking of sodium polyacrylate, lithium magnesium silicate and cellulose nanofiber. The abundant negatively charged ionic channels modulate Zn desolvation process and facilitate ion transport.

View Article and Find Full Text PDF

Rhizobacteria and silicon modulate defense, oxidative stress, and suppress blast disease in upland rice plants in low phosphorus soils under field conditions.

Planta

December 2024

Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil.

Rhizobacteria and silicon fertilization synergism suppress leaf and panicle Blast, and mitigates biotic stress in rice plants. Association of bioagents and silicon is synergistic for mitigating leaf and panicle blast and low phosphorus (P) levels in upland rice, under greenhouse conditions. This study aimed to evaluate the potential of the bioagents and silicon interaction on blast disease severity suppression in upland rice plants, under field low P conditions.

View Article and Find Full Text PDF

Silicate-based adsorbents offer significant advantages over traditional materials, particularly due to their superior thermal and chemical stability, enhanced regenerability, and the ability to endure more rigorous operating conditions. In this study, an amorphous Na-Ca-magnesium silicate adsorbent (SAAM) and its g-CN-modified counterpart (gCN-SAAM) were synthesized via alkali activation and a subsequent thermal process, respectively. The g-CN modification resulted in a novel hybrid adsorbent with a remarkable methylene blue (MB) adsorption capacity of 420 mg g, four times higher than the unmodified sample, setting a new benchmark.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have demonstrated considerable potential in the treatment of ischemic bone diseases, such as glucocorticoid-induced osteonecrosis of the femoral head (GIONFH). However, the clinical application of EVs faces challenges such as low yield, poor bioactivity, and lack of targeting. Herein, we have developed a platform of multiengineered extracellular vesicle mimetics (EVMs) to address these challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!