At present, the research on rice hull ash and cement-based materials as cementitious materials continues to deepen. Low-cost rice hull ash replaces part of Portland cement, which plays a dual role in saving material costs and improving environmental benefits. In this study, alkali-activated rice husk ash (RHA) and ground granulated blast furnace slag (GGBS) were used to prepare cementitious material. The influence of RHA dosage on the strength, slump degree, and coagulation time of cementitious material was studied. On this basis, tailing was used as an aggregate based on the orthogonal design method and the bone-gel ratio, modulus, and alkali content were taken as variable factors, with strength and slump degree taken as the targets. A new cemented paste backfill (CPB) was prepared and mix ratio optimization was carried out. The strength formation mechanism of cementitious material and CPB was explored by combining scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and -ray diffraction (XRD). The results of this study show that with the increase in RHA mixing, the unconfined compressive strength (UCS) of the gelling material purification slurry showed a tendency first to increase and then decrease. When the amount of RHA was about 10%, the internal structure became denser, more C-S-H gel was generated, and greater strength could be obtained. The specific surface area of RHA is high, and a small amount of RHA can fill the internal pores, making the internal structure of concrete more dense. The active silica content in RHA is relatively high. The addition of RHA can appropriately improve the strength of the material, which is of certain significance to our material research. Finally, the micro-analysis of RHA-GGBS clean slurry, the analysis of influencing factors of fluidity and strength, and the optimal mix proportion of alkali-activated RHA-GGBS-based backfill are put forward.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267305PMC
http://dx.doi.org/10.3390/ma15134397DOI Listing

Publication Analysis

Top Keywords

cementitious material
12
alkali-activated rice
8
rice husk
8
blast furnace
8
furnace slag
8
cemented paste
8
paste backfill
8
rice hull
8
hull ash
8
rha
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!