Codon usage bias (CUB) could reflect co-evolutionary changes between viruses and hosts in contrast to plant and animal viruses, and the systematic analysis of codon usage among the mycoviruses that infect plant pathogenic fungi is limited. We performed an extensive analysis of codon usage patterns among 98 characterized RNA mycoviruses from eight phytopathogenic fungi. The GC and GC3s contents of mycoviruses have a wide variation from 29.35% to 64.62% and 24.32% to 97.13%, respectively. Mycoviral CUB is weak, and natural selection plays a major role in the formation of mycoviral codon usage pattern. In this study, we demonstrated that the codon usage of mycoviruses is similar to that of some host genes, especially those involved in RNA biosynthetic process and transcription, suggesting that CUB is a potential evolutionary mechanism that mycoviruses adapt to in their hosts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267111PMC
http://dx.doi.org/10.3390/ijms23137441DOI Listing

Publication Analysis

Top Keywords

codon usage
24
analysis codon
8
usage mycoviruses
8
codon
6
mycoviruses
6
usage
5
usage insights
4
insights adaptive
4
adaptive evolution
4
evolution mycoviruses
4

Similar Publications

The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences.

View Article and Find Full Text PDF

Fitness and adaptive evolution of a Rhodococcus sp. harboring dioxin-catabolic plasmids.

World J Microbiol Biotechnol

January 2025

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.

Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.

View Article and Find Full Text PDF

Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Int J Mol Sci

January 2025

Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

Article Synopsis
  • The tRNA epitranscriptome plays a crucial role in regulating mRNA translation, but our understanding of its tissue-specific functions is limited.
  • Analyzing seven mouse tissues revealed unique patterns of tRNA modifications, with queuosine (Q) being prominent in the brain and mitochondrial modifications in the heart.
  • By testing a codon-mutated EGFP, researchers found that protein levels varied based on tissue type, highlighting the potential for tailoring gene therapies to enhance their effectiveness in specific tissues or conditions.
View Article and Find Full Text PDF

is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).

View Article and Find Full Text PDF

: Section is the most diverse group in the genus L., and this group of plants has a long history of cultivation in China as popular ornamental flowers and oil plants. Sect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!