AI Article Synopsis

  • The study developed a stable 3D gingival tissue equivalent (GTE) using specific cells and materials to overcome issues with uncontrolled collagen gel contraction, which limits its use in research and clinical settings.
  • Genipin, combined with cytochalasin D, significantly reduced contraction of the GTE while preserving cell viability and maintaining normal epithelial structure akin to natural gingiva.
  • This GTE model is valuable for researching periodontal and oral mucosa diseases, highlighting genipin's potential as a crosslinker in oral tissue engineering.

Article Abstract

Although three-dimensional (3D) co-culture of gingival keratinocytes and fibroblasts-populated collagen gel can mimic 3D structure of in vivo tissue, the uncontrolled contraction of collagen gel restricts its application in clinical and experimental practices. We here established a stable 3D gingival tissue equivalent (GTE) using hTERT-immortalized gingival fibroblasts (hGFBs)-populated collagen gel directly crosslinked with genipin/cytochalasin D and seeding hTERT-immortalized gingival keratinocytes (TIGKs) on the upper surface for a 2-week air-liquid interface co-culture. MTT assay was used to measure the cell viability of GTEs. GTE size was monitored following culture period, and the contraction was analyzed. Immunohistochemical assay was used to analyze GTE structure. qRT-PCR was conducted to examine the mRNA expression of keratinocyte-specific genes. Fifty µM genipin (G50) or combination (G + C) of G50 and 100 nM cytochalasin D significantly inhibited GTE contraction. Additionally, a higher cell viability appeared in GTEs crosslinked with G50 or G + C. GTEs crosslinked with genipin/cytochalasin D showed a distinct multilayered stratified epithelium that expressed keratinocyte-specific genes similar to native gingiva. Collagen directly crosslinked with G50 or G + C significantly reduced GTE contraction without damaging the epithelium. In summary, the TIGKs and hGFBs can successfully form organotypic multilayered cultures, which can be a valuable tool in the research regarding periodontal disease as well as oral mucosa disease. We conclude that genipin is a promising crosslinker with the ability to reduce collagen contraction while maintaining normal cell function in collagen-based oral tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266888PMC
http://dx.doi.org/10.3390/ijms23137401DOI Listing

Publication Analysis

Top Keywords

collagen gel
12
gingival tissue
8
tissue equivalent
8
gingival keratinocytes
8
htert-immortalized gingival
8
directly crosslinked
8
crosslinked genipin/cytochalasin
8
cell viability
8
keratinocyte-specific genes
8
gte contraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!