Fluorescent probes that exhibit solvatochromic or excited-state proton-transfer (ESPT) properties are essential tools for the study of complex biological or chemical systems. Herein, the synthesis and characterization of a novel fluorophore that reveals both features, 5-isocyanonaphthalene-1-ol (ICOL), are reported. Various solvatochromic methods, such as Lippert−Mataga and Bilot−Kawski, together with time-dependent density functional theory (TD-DFT) and time-resolved emission spectroscopy (TRES), were applied to gain insights into its excited-state behavior. To make comparisons, the octyloxy derivative of ICOL, 5-isocyano-1-(octyloxy)naphthalene (ICON), was also prepared. We found that internal charge transfer (ICT) takes place between the isocyano and −OH groups of ICOL, and we determined the values of the dipole moments for the ground and excited states of both ICOL and ICON. Furthermore, in the emission spectra of ICOL, a second band at higher wavelengths (green emission) in solvents of higher polarities (dual emission), in addition to the band present at lower wavelengths (blue emission), were observed. The extent of this dual emission increases in the order of 2-propanol < methanol < N,N-dimethylformamide (DMF) < dimethyl sulfoxide (DMSO). The presence of the dual fluorescence of ICOL in these solvents can be ascribed to ESPT. For ICOL, we also determined ground- and excited-state pKa values of 8.4 ± 0.3 and 0.9 ± 0.7, respectively, which indicates a considerable increase in acidity upon excitation. The TRES experiments showed that the excited-state lifetimes of the ICOL and ICON spanned from 10.1 ns to 5.0 ns and from 5.7 ns to 3.8 ns, respectively. In addition, we demonstrated that ICOL can be used as an effective indicator of not only the critical micelle concentration (cmc) of ionic (sodium lauryl sulfate (SLS)) and nonionic surfactants (Tween 80), but also other micellar parameters, such as partition coefficients, as well as to map the microenvironments in the cavities of biomacromolecules (e.g., BSA). It is also pointed out that fluorescence quenching by pyridine can effectively be utilized for the determination of the fractions of ICOL molecules that reside at the water−micelle interface and in the interior spaces of micelles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266744 | PMC |
http://dx.doi.org/10.3390/ijms23137250 | DOI Listing |
Mater Today Bio
February 2025
Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI, Dublin, Ireland.
Articular cartilage has limited capacity for repair (or for regeneration) under pathological conditions, given its non-vascularized connective tissue structure and low cellular density. Our group has successfully developed an injectable hydrogel for cartilage repair, composed of collagen type I (Col I), collagen type II (Col II), and methacrylated-hyaluronic acid (MeHA), capable of supporting chondrogenic differentiation of mesenchymal stem cells (MSCs) towards articular cartilage-like phenotypes. Recent studies have demonstrated that silencing may be an effective approach in promoting improved MSC chondrogenesis.
View Article and Find Full Text PDFZhen Ci Yan Jiu
May 2024
School of Acupuncture-moxibustion and Tuina & School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210046, China.
Objectives: To observe the effect of electroacupuncture(EA) on endometrial fibrosis and M1-type macrophages in rats with intrauterine adhesions(IUA), so as to explore the possible mechanism of EA in the treatment of IUA.
Methods: Fifteen female SD rats were randomly divided into blank group, model group and EA group, with 5 rats in each group. The IUA rat model was established by double damage method using mechanical scraping combined with lipopolysaccharide infection.
Exp Cell Res
June 2024
Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Londrina State University, Londrina, PR, Brazil. Electronic address:
The extracellular matrix surrounding the tumor undergoes changes in its organization during the metastasis process. The present study aims to quantify total collagen, collagen I (Col I) and collagen III (Col III), analyze the alignment of collagen fibers and assess the basement membrane integrity in samples from patients with metastatic and non-metastatic prostate cancer. Tissue samples from 60 patients were classified into groups based on prognostic parameters: better prognosis (n = 20), worse prognosis without metastasis (n = 23) and metastatic (n = 17).
View Article and Find Full Text PDFCells
January 2024
Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA.
The increase in the collagen I (COL I)/COL III ratio enhances vessel wall stiffness and renders vessels less resistant to blood flow and pressure changes. Activated microglia enhance inflammation-induced fibrosis. The COL I/COL III ratio in human and mouse brain arteriovenous malformations (bAVMs) is associated with bAVM hemorrhage, and the depletion of microglia decreases the COL I/COL III ratio and hemorrhage.
View Article and Find Full Text PDFBiofabrication
October 2023
Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
Current treatments for repairing articular cartilage defects are limited. However, pro-chondrogenic hydrogels formulated using articular cartilage matrix components (such as hyaluronic acid (HA) and collagen type II (Col II)), offer a potential solution if they could be injected into the defect via minimally invasive arthroscopic procedures, or used as bioinks to 3D print patient-specific customised regenerative scaffolds-potentially combined with cells. However, HA and Col II are difficult to incorporate into injectable/3D printable hydrogels due to poor physicochemical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!