We previously reported the design and synthesis of a small-molecule drug conjugate (SMDC) platform that demonstrated several advantages over antibody-drug conjugates (ADCs) in terms of in vivo pharmacokinetics, solid tumor penetration, definitive chemical structure, and adaptability for modular synthesis. Constructed on a tri-modal SMDC platform derived from 1,3,5-triazine (TZ) that consists of a targeting moiety (Lys-Urea-Glu) for prostate-specific membrane antigen (PSMA), here we report a novel class of chemically identical theranostic small-molecule prodrug conjugates (T-SMPDCs), [F]F-TZ(PSMA)-LEGU-TLR7, for PSMA-targeted delivery and controlled release of toll-like receptor 7 (TLR7) agonists to elicit de novo immune response for cancer immunotherapy. In vitro competitive binding assay of [F]F-TZ(PSMA)-LEGU-TLR7 showed that the chemical modification of Lys-Urea-Glu did not compromise its binding affinity to PSMA. Receptor-mediated cell internalization upon the PSMA binding of [F]F-TZ(PSMA)-LEGU-TLR7 showed a time-dependent increase, indicative of targeted intracellular delivery of the theranostic prodrug conjugate. The designed controlled release of gardiquimod, a TLR7 agonist, was realized by a legumain cleavable linker. We further performed an in vivo PET/CT imaging study that showed significantly higher uptake of [F]F-TZ(PSMA)-LEGU-TLR7 in PSMA PC3-PIP tumors (1.9 ± 0.4% ID/g) than in PSMA PC3-Flu tumors (0.8 ± 0.3% ID/g) at 1 h post-injection. In addition, the conjugate showed a one-compartment kinetic profile and in vivo stability. Taken together, our proof-of-concept biological evaluation demonstrated the potential of our T-SMPDCs for cancer immunomodulatory therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266369 | PMC |
http://dx.doi.org/10.3390/ijms23137160 | DOI Listing |
Discov Oncol
January 2025
Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing, 400010, China.
Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia.
Materials (Basel)
December 2024
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, commercial acid systems in oilfields present problems such as the uncontrollable release effect, high costs, and significant pollution.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Unidad nanoDrug, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, 02071 Albacete, Albacete, Spain.
The compounds targeting the bromo and extra terminal domain proteins (BET), such as the JQ1, present potent anti-cancer activity in preclinical models, however, the application of JQ1 at the clinical level is limited by its short half-life, rapid clearance, and non-selective inhibition of BET family proteins, leading to off-target effects and resistance. To address these challenges, the optimization of JQ1 delivery has been accomplished through polylactide (PLA) nanoparticles. PLA derivatives with varying molecular weights were synthesized via ring-opening polymerization using a zinc-based initiator and characterized using thermogravimetric analysis, differential scanning calorimetry, and infrared spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!