In this study, we proposed an in vitro tumor model to simulate the mechanical microenvironment and investigate the effect of compressive stress on the invasion process of malignant tumors. It has been pointed out that the biomechanical environment, as well as the biochemical environment, could affect the transformation of cancer cell migration, invasion, and metastasis. We hypothesized that the solid stress caused by the exclusion of surrounding tissue could transform tumor cells from noninvasive to invasive phenotypes. Colorectal cell spheroids were embedded and cultured in agarose gels of varying concentrations to simulate the earliest stages of tumor formation and invasion. The spheroids embedded in gels at higher concentrations showed peculiar growth after 72 h of culture, and the external compressive loading imposed on them caused peculiar growth even in the gels at lower concentrations. In conclusion, the mechanical microenvironment caused the transformation of tumor cell phenotypes, promoting the growth and invasion of tumor cell spheroids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266885 | PMC |
http://dx.doi.org/10.3390/ijms23137091 | DOI Listing |
Sci Rep
January 2025
The Fourth Engineering Co., LTD, China Railway Fourth Bureau, Hefei, 230012, People's Republic of China.
Research investigating the complex mechanical properties and energy evolution mechanisms of frozen calcareous clay under the influence of multiple factors is crucial for optimizing the artificial ground freezing method in shaft sinking, thereby enhancing construction quality and safety. In this study, a four-factor, four-level orthogonal test was devised, taking into account temperature, confining pressure, dry density, and water content. The complex nonlinear curvilinear relationship between deviatoric stress, volume strain, and axial strain of frozen calcareous clay under different interaction levels was analyzed.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
Long-term erosion by acidic solutions in karst regions leads to continuous deterioration of the physical and mechanical properties at the interfaces of engineering structures, adversely affecting their operational performance. To investigate the degradation patterns of the mechanical properties and corrosion mechanisms of the concrete‒limestone composite (CLC) after exposure to acidic corrosion, three kinds of CLC samples treated with acidic solutions of different pH values were fabricated. Mechanical property analysis was conducted via triaxial compression testing methods.
View Article and Find Full Text PDFDental titanium implants and their surface modifications markedly improve implant biocompatibility. However, studies evaluating the mechanical biocompatibility of implants are scarce. In particular, the analysis of mechanical biocompatibility deficiencies leading to stress shield-induced bone resorption.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China.
In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.
View Article and Find Full Text PDFJOR Spine
March 2025
Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.
Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!