A New Bistable Switch Model of Alzheimer's Disease Pathogenesis.

Int J Mol Sci

Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy.

Published: June 2022

We propose a model to explain the pathogenesis of Alzheimer's disease (AD) based on the theory that any disease affecting a healthy organism originates from a bistable feedback loop that shifts the system from a physiological to a pathological condition. We focused on the known double inhibitory loop involving the cellular prion protein (PrPC) and the enzyme BACE1 that produces amyloid-beta (Aβ) peptides. BACE1 is inhibited by PrPC, but its inhibitory activity is lost when PrPC binds to Aβ oligomers (Aβo). Excessive Aβo formation would switch the loop to a pathogenic condition involving the Aβo-PrPC-mGluR5 complex, Fyn kinase activation, tau, and NMDAR phosphorylation, ultimately leading to neurodegeneration. Based on the emerging role of cyclic nucleotides in Aβ production, and thereby in synaptic plasticity and cognitive processes, cAMP and cGMP can be considered as modulatory factors capable of inducing the transition from a physiological steady state to a pathogenic one. This would imply that critical pharmacological targets for AD treatment lie within pathways that lead to an imbalance of cyclic nucleotides in neurons. If this hypothesis is confirmed, it will provide precise indications for the development of preventive or therapeutic treatments for the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267076PMC
http://dx.doi.org/10.3390/ijms23137061DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
cyclic nucleotides
8
bistable switch
4
switch model
4
model alzheimer's
4
disease
4
disease pathogenesis
4
pathogenesis propose
4
propose model
4
model explain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!