Although nude mice are an ideal photoaging research model, skin biopsies result in inflammation and are rarely performed at baseline. Meanwhile, studies on antiphotoaging antioxidants or rejuvenation techniques often neglect the spontaneous reversal capacity. Full-field optical coherence tomography (FFOCT) can acquire cellular details noninvasively. This study aimed to establish a photoaging and sequential function reversal nude mice model assisted by an in vivo cellular resolution FFOCT system. We investigated whether a picosecond alexandrite laser (PAL) with a diffractive lens array (DLA) accelerated the reversal. In the sequential noninvasive assessment using FFOCT, a spectrophotometer, and DermaLab Combo®, the photodamage percentage recovery plot demonstrated the spontaneous recovery capacity of the affected skin by UVB-induced transepidermal water loss and UVA-induced epidermis thickening. A PAL with DLA not only accelerated skin barrier regeneration with epidermal polarity, but also increased dermal neocollagenesis, whereas the nonlasered group still had >60% collagen intensity loss and 40% erythema from photodamage. Our study demonstrated that FFOCT images accurately resemble the living tissue. The photoaging and sequential function reversal model provides a reference to assess the spontaneous recovery capacity of nude mice from photodamage. This model can be utilized to evaluate the sequential noninvasive photodamage and reversal effects after other interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266384PMC
http://dx.doi.org/10.3390/ijms23137009DOI Listing

Publication Analysis

Top Keywords

nude mice
16
photoaging sequential
12
sequential function
12
function reversal
12
optical coherence
8
coherence tomography
8
mice model
8
dla accelerated
8
sequential noninvasive
8
spontaneous recovery
8

Similar Publications

Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system, and clear cell renal cell carcinoma (ccRCC) is the most common subtype. MYBL2 has been reported to be overexpressed in various tumors and associated with poor prognosis in patients, but its biological role in ccRCC remains unclear. In this study, we investigated the mRNA and protein expression levels of MYBL2 in ccRCC samples and evaluated the prognostic value of MYBL2 using TCGA dataset.

View Article and Find Full Text PDF

Application of MMP-2-responsive forming injectable hydrogel in preventing the recurrence of oral squamous cell carcinoma.

RSC Adv

January 2025

Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA No. 30 Fucheng Road, Haidian District Beijing 100142 China

Oral squamous cell carcinoma is one of the most common types of cancer. Surgical resection is one of the most important treatments at present. However, patients often suffer from regional recurrence after surgery.

View Article and Find Full Text PDF

Ovarian cancer is the seventh most common lethal tumor among women in the world. FOXM1 is a transcription factor implicated in the initiation and progression of ovarian cancer by regulating key oncogenic genes. The role of regulatory regions in regulating the expression of FOXM1 in ovarian cancer is not completely clarified.

View Article and Find Full Text PDF

TWIST1 Regulates FOXM1/β-Catenin to Promote the Growth, Migration, and Invasion of Ovarian Cancer Cells by Activating MFAP2.

J Biochem Mol Toxicol

February 2025

Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

TWIST1 is aberrantly expressed in ovarian cancer (OC). MFAP2 is a downstream target of TWIST1, and we previously found MFAP2 facilitated OC development by activating FOXM1/β-catenin. We planned to investigate the mechanisms of TWIST1 in OC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!