The mechanism of the neuroprotective effect of the macrophage migration inhibitory factor (MIF) in vivo is unclear. We investigated whether the MIF promotes neurological recovery in an in vivo mouse model of ischemic stroke. Transient middle cerebral artery occlusion (MCAO) surgery was performed to make ischemic stroke mouse model. Male mice were allocated to a sham vehicle, a sham MIF, a middle cerebral artery occlusion (MCAO) vehicle, and MCAO+MIF groups. Transient MCAO (tMCAO) was performed in the MCAO groups, and the vehicle and the MIF were administered via the intracerebroventricular route. We evaluated the neurological functional scale, the rotarod test, and T2-weighted magnetic resonance imaging. The expression level of the microtubule-associated protein 2 (MAP2), Bcl2, and the brain-derived neurotrophic factor (BDNF) were further measured by Western blot assay. The Garcia test was significantly higher in the MCAO+MIF group than in the MCAO+vehicle group. The MCAO+MIF group exhibited significantly better performance on the rotarod test than the MCAO+vehicle group, which further had a significantly reduced total infarct volume on T2-weighted MRI imaging than the MCAO vehicle group. Expression levels of BDNF, and MAP2 tended to be higher in the MCAO+MIF group than in the MCAO+vehicle group. The MIF exerts a neuroprotective effect in an in vivo ischemic stroke model. The MIF facilitates neurological recovery and protects brain tissue from ischemic injury, indicating a possibility of future novel therapeutic agents for stroke patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267067 | PMC |
http://dx.doi.org/10.3390/ijms23136975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!