Background: Neurological deficits following subarachnoid hemorrhage (SAH) are caused by early or delayed brain injuries. Our previous studies have demonstrated that hyperglycemia induces profound neuronal apoptosis of the cerebral cortex. Morphologically, we found that hyperglycemia exacerbated late vasospasm following SAH. Thus, our previous studies strongly suggest that post-SAH hyperglycemia is not only a response to primary insult, but also an aggravating factor for brain injuries. In addition, mitochondrial fusion and fission are vital to maintaining cellular functions. Current evidence also shows that the suppression of mitochondrial fission alleviates brain injuries after experimental SAH. Hence, this study aimed to determine the effects of mitochondrial dynamic modulation in hyperglycemia-related worse SAH neurological prognosis. Materials and methods: In vitro, we employed an enzyme-linked immunosorbent assay (ELISA) to detect the effect of mitochondrial division inhibitor-1 (Mdivi-1) on lipopolysaccharide (LPS)-induced BV-2 cells releasing inflammatory factors. In vivo, we produced hyperglycemic rats via intraperitoneal streptozotocin (STZ) injections. Hyperglycemia was confirmed using blood-glucose measurements (>300 mg/dL) 7 days after the STZ injection. The rodent model of SAH, in which fresh blood was instilled into the craniocervical junction, was used 7 days after STZ administration. We investigated the mechanism and effect of Mdivi-1, a selective inhibitor of dynamin-related protein (Drp1) to downregulate mitochondrial fission, on SAH-induced apoptosis in a hyperglycemic state, and evaluated the results in a dose−response manner. The rats were divided into the following five groups: (1) control, (2) SAH only, (3) Diabetes mellitus (DM) + SAH, (4) Mdivi-1 (0.24 mg/kg) + DM + SAH, and (5) Mdivi-1 (1.2 mg/kg) + DM + SAH. Results: In vitro, ELISA revealed that Mdivi-1 inhibited microglia from releasing inflammatory factors, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. In vivo, neurological outcomes in the high-dose (1.2 mg/kg) Mdivi-1 treatment group were significantly reduced compared with the SAH and DM + SAH groups. Furthermore, immunofluorescence staining and ELISA revealed that a high dose of Mdivi-1 had attenuated inflammation and neuron cell apoptosis by inhibiting Hyperglycemia-aggravated activation, as well as microglia and astrocyte proliferation, following SAH. Conclusion: Mdivi-1, a Drp-1 inhibitor, attenuates cerebral vasospasm, poor neurological outcomes, inflammation, and neuron cell apoptosis following SAH + hyperglycemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267000PMC
http://dx.doi.org/10.3390/ijms23136924DOI Listing

Publication Analysis

Top Keywords

brain injuries
16
sah
13
mdivi-1
9
mitochondrial division
8
division inhibitor-1
8
inhibitor-1 mdivi-1
8
early delayed
8
delayed brain
8
injuries experimental
8
subarachnoid hemorrhage
8

Similar Publications

Early brain injury (EBI) after subarachnoid hemorrhage (SAH) is a clear correlation with poor prognosis. In the past 20 years, the research on EBI has increased rapidly. However, there is a lack of bibliometric analysis related to EBI.

View Article and Find Full Text PDF

Background: Invasive systems are commonly used for monitoring intracranial pressure (ICP) in traumatic brain injury (TBI) and are considered the gold standard. The availability of invasive ICP monitoring is heterogeneous, and in low- and middle-income settings, these systems are not routinely employed due to high cost or limited accessibility. The aim of this consensus was to develop recommendations to guide monitoring and ICP-driven therapies in TBI using non-invasive ICP (nICP) systems.

View Article and Find Full Text PDF

Rat models of postintracerebral hemorrhage pneumonia induced by nasal inoculation with or intratracheal inoculation with LPS.

Front Immunol

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).

Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.

Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Objectives: To establish the determinants of death in hospital for patients with moderate to severe traumatic brain injury (TBI) in Australia.

Design, Setting, Participants: Retrospective analysis of Australia New Zealand Trauma Registry (ANZTR) data. Cases were included if they presented to a participating hospital between 1 July 2015 and 30 June 2020 and had an Abbreviated Injury Severity (AIS) score - head greater than 2.

View Article and Find Full Text PDF

Traumatic brain injury is one of the most common cerebral incidences worldwide. Repetitive mild traumatic brain injuries occurring, for example, in athletes or victims of abuse, can cause chronic neurodegeneration due to neuroinflammation, in which the crosstalk between reactive astrocytes and activated microglia is crucial for modulating neuronal damage. The inducible enzyme heme oxygenase-1 and its product carbon monoxide are known to be ascribed neuroprotective and anti-inflammatory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!