A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chronic SSRI Treatment, but Not Norepinephrine Reuptake Inhibitor Treatment, Increases Neurogenesis in Juvenile Rats. | LitMetric

There has been growing recognition that major depressive disorder is a serious medical disorder that also affects children. This has been accompanied by an increased use of antidepressant drugs in adolescents; however, not all classes of antidepressants are effective in children and adolescents. There is an increasing need to understand the differences in antidepressant action in different developmental stages. There are some data indicating that the behavioral effect of chronic antidepressant treatment in adult rodents is dependent on hippocampal neurogenesis; however, it is not known which classes of antidepressant drugs induce hippocampal neurogenesis in adolescent rodents. Three classes of antidepressant drugs were tested in two age groups of Sprague Dawley rats, pre-adolescent (postnatal days 11-24) and adolescent (postnatal days 21-34): monoamine oxidase inhibitors (MAOIs); selective serotonin reuptake inhibitors (SSRIs); serotonin norepinephrine reuptake inhibitors (SNRIs); and tricyclic antidepressants (TCAs). To address which classes of antidepressant drugs might alter the rate of mitogenesis in neural progenitor cells in an adolescent rodent model, adolescent Sprague Dawley rats were treated with the thymidine analog 5-bromo-deoxy-2'-uridine (BrdU) on postnatal days 21 and 22 and antidepressant drugs or vehicle for 14 days (postnatal days 21-34). To address which classes of antidepressant drugs might alter the rate of neurogenesis, postnatal day-21 Sprague Dawley rats were treated with antidepressant drugs or vehicle for 14 days (postnatal days 21-34) and BrdU on postnatal days 33 and 34. In both experimental paradigms, BrdU-positive cells in the subgranular zone and the granule cell layer were counted. Newborn neurons were identified in the neurogenic paradigm by identifying cells expressing both the neuronal specific marker NeuN and BrdU using confocal microscopy. Only the SSRI fluoxetine significantly altered the basal mitogenic and neurogenic rates in adolescent rats. Treatment with the monoamine oxidase inhibitor (MAOI) tranylcypromine (TCP) and the TCA desipramine did not alter the rate of hippocampal neurogenesis in the adolescent rats. This is consistent with human clinical observations, where only SSRIs have efficacy for treatment of depression in patients under the age of 18. In pre-adolescent rats, postnatal days 11-24, none of the drugs tested significantly altered the basal mitogenic or neurogenic rates. All of the classes of antidepressant drugs are known to induce hippocampal neurogenesis in adult rats. The mechanisms of action underlying this developmental difference in antidepressant drug action between juveniles and adults are not known.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267057PMC
http://dx.doi.org/10.3390/ijms23136919DOI Listing

Publication Analysis

Top Keywords

antidepressant drugs
32
postnatal days
28
classes antidepressant
20
hippocampal neurogenesis
16
sprague dawley
12
dawley rats
12
days 21-34
12
alter rate
12
antidepressant
11
drugs
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!