The carrying capacity of fish is related to the sustainability of fisheries' activities in water bodies. The fish carrying capacity of a water body is the maximum fish yield that can be carried by the natural bait organisms in the water body under the ideal natural conditions without feeding and fertilization. The evaluation of fish productivity is an important basis for rational stocking, rational fishing, and the scientific utilization of natural bait resources in a water area. This paper adopts the background data of the Shengjin Lake fishery ecosystem and uses the bait-based estimation method. The results show that (1) the annual yield of silver carp fed on phytoplankton is 1.5 million kg; (2) the annual yield of bighead carp fed on zooplankton is 1.295 million kg; (3) the annual yield of benthos is 310,000 kg; (4) the annual yield of organic detritus is 280,000 kg; and (5) as the coverage of water grass in Shengjin Lake is less than 10%, it should be protected and restored rather than used by fish. In general, the annual maximum carrying capacity of fish in Shengjin Lake is 3.385 million kg, except for water and grass.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265981 | PMC |
http://dx.doi.org/10.3390/ijerph19138177 | DOI Listing |
Sensors (Basel)
December 2024
Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Deqing 313200, China.
Using microwave remote sensing to invert forest parameters requires clear canopy scattering characteristics, which can be intuitively investigated through scattering measurements. However, there are very few ground-based measurements on forest branches, needles, and canopies. In this study, a quantitative analysis of the canopy branches, needles, and ground contribution of Masson pine scenes in C-, X-, and Ku-bands was conducted based on a microwave anechoic chamber measurement platform.
View Article and Find Full Text PDFNutrients
January 2025
University of Life Sciences "King Mihai I", 300645 Timisoara, Romania.
Background/objectives: Agricultural systems face increasing global pressure to address sustainability challenges, particularly regarding land use and environmental protection. In Romania, where traditional diets are heavily dependent on animal-based products, optimizing land use is critical. This study investigates the potential of plant-based diets to reduce agricultural land use, examining scenarios of partial and complete replacement of animal protein with plant protein sources (soy, peas, and potatoes).
View Article and Find Full Text PDFNutrients
December 2024
Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy.
: The water footprint (WF) provides information on the impact of individual foods on water consumption, but to better direct food production toward water saving, we need to understand how to reduce the WF of our diets while keeping it healthy. In this study, we compared the WF of healthy diets based on national food-based dietary guidelines with the aim of highlighting changes in dietary patterns that could reduce water requirements without compromising nutritional adequacy. : Three 2000 kcal/day dietary patterns were elaborated following the Italian, Spanish, and American dietary guidelines, and their total, green, blue, and grey WFs were calculated.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.
Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, from encoding an exporter of Ni and cobalt was overexpressed constitutively in , and the performance of transgenic plants was assayed under Ni stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!