Interactions between stromal and lymphoma cells in the bone marrow are closely related to drug resistance and therapy failure. Physiologically relevant pre-clinical three-dimensional (3D) models recapitulating lymphoma microenvironmental complexity do not currently exist. In this study, we proposed a scheme for optically controlled hybrid lymphoma spheroid formation with the use of optical tweezers (OT). Following the preparation of stromal spheroids using agarose hydrogel, two aggressive non-Hodgkin lymphoma B-cell lines, Ri-1 (DLBCL) and Raji (Burkitt lymphoma), were used to conduct multi-cellular spheroid formation driven by in-house-developed fluorescence optical tweezers. Importantly, the newly formed hybrid spheroid preserved the 3D architecture for the next 24 h. Our model was successfully used for the evaluation of the influence of the anticancer agents doxorubicin (DOX), ibrutinib (IBR), and AMD3100 (plerixafor) on the adhesive properties of lymphoma cells. Importantly, our study revealed that a co-treatment of DOX and IBR with AMD3100 affects the adhesion of B-NHL lymphoma cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265821PMC
http://dx.doi.org/10.3390/cells11132113DOI Listing

Publication Analysis

Top Keywords

optical tweezers
12
lymphoma cells
12
fluorescence optical
8
spheroid formation
8
ibr amd3100
8
lymphoma
7
formation lymphoma
4
lymphoma hybrid
4
hybrid spheroids
4
spheroids drug
4

Similar Publications

Probing the interaction of mannose-binding lectin with healthy and sickle cell anemia red blood cells and its role in cellular biomechanics.

Int J Biol Macromol

January 2025

Departmento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil. Electronic address:

Mannose-binding lectin (MBL) is an important glycoprotein of the human innate immune system. Furthermore, individuals with sickle cell anemia (SCA) and MBL deficiency seem more susceptible to vaso-occlusive crises, suggesting an MBL role on HbSS red blood cells (RBCs). This study investigated the interaction of MBL with HbA (healthy) and HbSS RBCs using optical tweezers (OT) and atomic force microscopy (AFM).

View Article and Find Full Text PDF

The reactivation of heterotrimeric protein phosphatase 2A (PP2A) through small molecule activators is of interest to therapeutic intervention due to its dysregulation, which is linked to chronic conditions. This study focuses on the PP2A scaffold subunit PR65 and a small molecule activator, ATUX-8385, designed to bind directly to this subunit. Using a label-free single-molecule approach with nanoaperture optical tweezers (NOT), we quantify its binding, obtaining a dissociation constant of 13.

View Article and Find Full Text PDF

Single-Cell Identification and Characterization of Viable but Nonculturable Using Raman Optical Tweezers and Machine Learning.

Anal Chem

January 2025

Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada.

is a leading foodborne pathogen that may enter a viable but nonculturable (VBNC) state to survive under environmental stresses, posing a significant health concern. VBNC cells can evade conventional culture-based detection methods, while viability-based assays are usually hindered by low sensitivity, insufficient specificity, or technical challenges. There are limited studies analyzing VBNC cells at the single-cell level for accurate detection and an understanding of their unique behavior.

View Article and Find Full Text PDF

Realizing quantum control and entanglement of particles is crucial for advancing both quantum technologies and fundamental science. Substantial developments in this domain have been achieved in a variety of systems. In this context, ultracold polar molecules offer new and unique opportunities because of their more complex internal structure associated with vibration and rotation, coupled with the existence of long-range interactions.

View Article and Find Full Text PDF

Function of nodal cilia in left-right determination: Mechanical regulation in initiation of symmetry breaking.

Biophys Physicobiol

September 2024

Department of Cell Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

Visceral organs in vertebrates are arranged with left-right asymmetry; for example, the heart is located on the left side of the body. Cilia at the node of mouse early embryos play an essential role in determining this left-right asymmetry. Using information from the anteroposterior axis, motile cilia at the central region of the node generate leftward nodal flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!