Microglia Phenotypes in Aging and Neurodegenerative Diseases.

Cells

Hooks Lab, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA.

Published: June 2022

Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer's disease (AD), and Parkinson's disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266143PMC
http://dx.doi.org/10.3390/cells11132091DOI Listing

Publication Analysis

Top Keywords

microglia
8
microglia phenotypes
8
neurodegenerative diseases
8
human postmortem
8
acute chronic
8
response microglia
8
inflammatory responses
8
aging nds
8
phenotypes aging
4
aging neurodegenerative
4

Similar Publications

Blocking the p38 MAPK Signaling Pathway in the Rat Hippocampus Alleviates the Depressive-like Behavior Induced by Spinal Cord Injury.

ACS Chem Neurosci

January 2025

Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the first Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China.

Patients with spinal cord injury (SCI) may develop depression, which can affect their rehabilitation. However, the underlying mechanism of depression in SCI patients remains unclear. Previous studies have revealed increased p38 MAPK phosphorylation in the rat hippocampus after SCI, accompanied by depression-like behaviors.

View Article and Find Full Text PDF

Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways.

Glia

January 2025

Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.

Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.

View Article and Find Full Text PDF

Hydrocortisone Attenuates the Development of Malformations of the Polymicrogyria Spectrum.

Int J Dev Neurosci

February 2025

Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Most of the malformations of the polymicrogyria spectrum are caused by destructive lesions of the neocortex during the third trimester of pregnancy, triggered by hypoxic-ischemic, hemorrhagic or infectious events, with neuroinflammation as a common pathophysiological mechanism. Our study investigated hydrocortisone treatment in attenuating inflammation, malformations development and seizures predisposition in mice subjected to neonatal transcranial freeze lesion. Our results show attenuation of malformation and predisposition to febrile seizures, with concomitant reduction of macrophages/microglia after neonatal freeze lesion, polarizing them towards an anti-inflammatory profile.

View Article and Find Full Text PDF

In this study, we aimed to explore the sex-specific effects and mechanisms of sevoflurane exposure on the neural development of pubertal rats on the basis of M1/M2 microglial cell polarisation and related signalling pathways. A total of 48 rat pups (24 males and 24 females) were assigned to the 0- or 2-h sevoflurane exposure group on the seventh day after birth. The Morris water maze (MWM) test was subsequently conducted on the 32nd to 38th days after birth.

View Article and Find Full Text PDF

The fate mapping technique is essential for understanding how cells differentiate and organize into complex structures. Various methods are used in fate mapping, including dye injections, genetic labeling (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!