Mutant KRAS-Associated Proteome Is Mainly Controlled by Exogenous Factors.

Cells

Instituto de Investigação e Inovação em Saúde (i3S), Rua Alfredo Allen 208, 4200-135 Porto, Portugal.

Published: June 2022

Understanding how mutant KRAS signaling is modulated by exogenous stimuli is of utmost importance to elucidate resistance mechanisms underlying pathway inhibition failure, and to uncover novel therapeutic targets for mutant KRAS patients. Hence, aiming at perceiving KRAS-autonomous versus -non autonomous mechanisms, we studied the response of two mutant KRAS colorectal cancer cell lines (HCT116 and LS174T) upon KRAS silencing and treatment with rhTGFβ1-activated fibroblasts secretome. A proteomic analysis revealed that rhTGFβ1-activated fibroblast-secreted factors triggered cell line-specific proteome alterations and that mutant KRAS governs 43% and 38% of these alterations in HCT116 and LS174T cells, respectively. These KRAS-dependent proteins were localized and displayed molecular functions that were common to both cell lines (e.g., extracellular exosome, RNA binding functions). Moreover, 67% and 78% of the KRAS-associated proteome of HCT116 and LS174T cells, respectively, was controlled in a KRAS-non-autonomous manner, being dependent on fibroblast-secreted factors. In HCT116 cells, KRAS-non-autonomously controlled proteins were mainly involved in proteoglycans in cancer, p53, and Rap1 signaling pathways; whereas in LS174T cells, they were associated with substrate adhesion-dependent cell-spreading and involved in metabolic processes. This work highlights the context-dependency of KRAS-associated signaling and reinforces the importance of integrating the tumor microenvironment in the study of KRAS-associated effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265670PMC
http://dx.doi.org/10.3390/cells11131988DOI Listing

Publication Analysis

Top Keywords

mutant kras
16
hct116 ls174t
12
ls174t cells
12
kras-associated proteome
8
cell lines
8
fibroblast-secreted factors
8
mutant
5
kras
5
mutant kras-associated
4
proteome controlled
4

Similar Publications

Background: TG02 is a peptide-based cancer vaccine eliciting immune responses to oncogenic codon 12/13 mutations. This phase 1 clinical trial (NCT02933944) assessed the safety and immunological efficacy of TG02 adjuvanted by GM-CSF in patients with -mutant colorectal cancer.

Methods: In the interval between completing CRT and pelvic exenteration, patients with resectable mutation-positive, locally advanced primary or current colorectal cancer, received 5-6 doses of TG02/GM-CSF.

View Article and Find Full Text PDF

Pancreatic cancer-derived extracellular vesicles remodel the tumor microenvironment and enhance chemoresistance by delivering KRAS protein to cancer-associated fibroblasts.

Mol Ther

January 2025

Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China. Electronic address:

KRAS mutations are instrumental in the development and progression of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the efficacy of direct targeting of KRAS mutations to inhibit tumor development remains doubtful. It is therefore necessary to gain a deeper insight into the mechanism in which KRAS mutations influence the effectiveness of clinical treatments.

View Article and Find Full Text PDF

The small GTPase MRAS is a broken switch.

Nat Commun

January 2025

Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada.

Intense research on founding members of the RAS superfamily has defined our understanding of these critical signalling proteins, leading to the premise that small GTPases function as molecular switches dependent on differential nucleotide loading. The closest homologs of H/K/NRAS are the three-member RRAS family, and interest in the MRAS GTPase as a regulator of MAPK activity has recently intensified. We show here that MRAS does not function as a classical switch and is unable to exchange GDP-to-GTP in solution or when tethered to a lipid bilayer.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer-related death by 2030. Early identification is rare, with a 5-year overall survival (OS) of less than 10%. Advances in the understanding of PDAC tumor biology are needed to improve these outcomes.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!