Pancreatic cancer is one of the most lethal cancers. Due to the difficulty of early diagnosis, most patients are diagnosed with metastasis or advanced-stage cancer, limiting the possibility of surgical treatment. Therefore, chemotherapy is applied to improve patient outcomes, and gemcitabine has been the primary chemotherapy drug for pancreatic cancer for over a decade. However, drug resistance poses a significant challenge to the efficacy of chemotherapy. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) gene-editing system is a powerful tool, and researchers have developed CRISPR/Cas9 library screening as a means to identify the genes associated with specific phenotype changes. We performed genome-wide CRISPR/Cas9 knockout screening in the mouse pancreatic cancer cell line TB32047 with gemcitabine treatment and identified deoxycytidine kinase (DCK) and cyclin L1 (CCNL1) as the top hits. We knocked out DCK and CCNL1 in the TB32047 and PANC1 cell lines and confirmed that the loss of DCK or CCNL1 enhanced gemcitabine resistance in pancreatic cells. Many researchers have addressed the mechanism of DCK-related gemcitabine resistance; however, no study has focused on CCNL1 and gemcitabine resistance. Therefore, we explored the mechanism of CCNL1-related gemcitabine resistance and found that the loss of CCNL1 activates the ERK/AKT/STAT3 survival pathway, causing cell resistance to gemcitabine treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264918 | PMC |
http://dx.doi.org/10.3390/cancers14133152 | DOI Listing |
Transl Cancer Res
December 2024
Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
Background: Pancreatic ductal adenocarcinoma (PDAC) ranks among the deadliest cancers globally. Despite gemcitabine being a primary chemotherapeutic agent, many patients with PDAC develop resistance, significantly limiting treatment efficacy. This study aims to screen and validate key genes associated with gemcitabine resistance in advanced PDAC using bioinformatics analysis and clinical sample validation, thereby providing potential noninvasive biomarkers and therapeutic targets for overcoming chemoresistance.
View Article and Find Full Text PDFJ Gastrointest Oncol
December 2024
Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: In recent years, the incidence of pancreatic cancer has shown an obvious increasing trend worldwide and even causes a greater disease burden to the mankind. Due to the lack of effective early surveillance methods, patients are often in the middle to advanced stages of their disease at the time of detection, thus losing the opportunity for surgery. The currently available chemotherapy regimens are yet to be further improved to prolong patient survival.
View Article and Find Full Text PDFBioeng Transl Med
January 2025
Department of Chemical and Biomolecular Engineering Yonsei University Seoul South Korea.
This study presents a novel in vitro bilayer 3D co-culture platform designed to obtain cancer-associated fibroblasts (CAFs)-like cells. The platform consists of a bilayer hydrogel structure with a collagen/polyethylene glycol (PEG) hydrogel for fibroblasts as the upper layer and an alginate hydrogel for tumor cells as the lower layer. The platform enabled paracrine interactions between fibroblasts and cancer cells, which allowed for selective retrieval of activated fibroblasts through collagenase treatment for further study.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy.
Background/objectives: Intrahepatic cholangiocarcinoma (iCCA) is a malignant liver tumor with a rising global incidence and poor prognosis, largely due to late-stage diagnosis and limited effective treatment options. Standard chemotherapy regimens, including cisplatin and gemcitabine, often fail because of the development of multidrug resistance (MDR), leaving patients with few alternative therapies. Doxycycline, a tetracycline antibiotic, has demonstrated antitumor effects across various cancers, influencing cancer cell viability, apoptosis, and stemness.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Background: Inadequate treatment responses, chemotherapy resistance, significant heterogeneity, and lengthy treatment durations create an urgent need for new pancreatic cancer therapies. This study aims to investigate the effectiveness of gemcitabine-loaded nanoparticles enclosed in an organo-metallic framework under ketogenic conditions in inhibiting the growth of MIA-PaCa-2 cells.
Methods: Gemcitabine was encapsulated in Metal-organic frameworks (MOFs) and its morphology and size distribution were examined using transmission electron microscopy (TEM) and Dynamic light scattering (DLS) with further characterization including FTIR analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!