Hepsin is a type II transmembrane serine protease whose deregulation promotes tumor invasion by proteolysis of the pericellular components. In colorectal cancer, the implication of hepsin is unknown. Consequently, we aimed to study the correlations between hepsin expression and different clinical-histopathological variables in 169 patients with localized colorectal cancer and 118 with metastases. Tissue microarrays were produced from samples at diagnosis of primary tumors and stained with an anti-hepsin antibody. Hepsin expression was correlated with clinical-histopathological variables by using the chi-square and Kruskal−Wallis tests, Kaplan−Meier and Aalen−Johansen estimators, and Cox and Fine and Gray multivariate models. In localized cancer patients, high-intensity hepsin staining was associated with reduced 5-year disease-free survival (p-value = 0.16). Medium and high intensity of hepsin expression versus low expression was associated with an increased risk of metastatic relapse (hazard ratio 2.83, p-value = 0.035 and hazard ratio 3.30, p-value = 0.012, respectively), being a better prognostic factor than classic histological variables. Additionally, in patients with localized tumor, 5-year thrombosis cumulative incidence increased with the increment of hepsin expression (p-value = 0.038). Medium and high intensities of hepsin with respect to low intensity were associated with an increase in thrombotic risk (hazard ratio 7.71, p-value = 0.043 and hazard ratio 9.02, p-value = 0.028, respectively). This relationship was independent of previous tumor relapse (p-value = 0.036). Among metastatic patients, low hepsin expression was associated with a low degree of tumor differentiation (p-value < 0.001) and with major metastatic dissemination (p-value = 0.023). Hepsin is a potential thrombotic and metastatic biomarker in patients with localized colorectal cancer. In metastatic patients, hepsin behaves in a paradoxical way with respect to differentiation and invasion processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264764 | PMC |
http://dx.doi.org/10.3390/cancers14133106 | DOI Listing |
Life Sci
January 2025
Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China. Electronic address:
Aims: Hepsin (HPN), a Type II transmembrane serine protease (TTSP), is involved in hepatocyte metabolism and various diseases. It undergoes autoactivation on the surface of human hepatoma cells, a mechanism not observed in other cell types. This study aims to explore HPN activation and surface expression in endometrial epithelial cells.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
SPINT1, a membrane-anchored serine protease inhibitor, regulates cascades of pericellular proteolysis while its tissue-specific functions remain incompletely characterized. In this study, we generate Spint1-lacZ knock-in mice and observe Spint1 expression in embryonic pancreatic epithelium. Pancreas-specific Spint1 disruption significantly diminishes islet size and mass, causing glucose intolerance and downregulation of MAFA and insulin.
View Article and Find Full Text PDFHear Res
November 2024
Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan. Electronic address:
Mutations in various type II transmembrane serine protease (TMPRSS) family members are associated with non-syndromic hearing loss, with some mechanisms still unclear. For instance, the mechanism underlying profound hearing loss and tectorial membrane (TM) malformations in hepsin/TMPRSS1 knockout (KO) mice remains elusive. In this study, we confirmed significantly elevated hearing thresholds and abnormal TM morphology in hepsin KO mice, characterized by enlarged TM with gaps and detachment from the spiral limbus.
View Article and Find Full Text PDFCell Biol Toxicol
September 2024
Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
J Virol
May 2024
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA.
Unlabelled: We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!