Origin and Fate of Acrolein in Foods.

Foods

Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.

Published: July 2022

Acrolein is a highly toxic agent that may promote the occurrence and development of various diseases. Acrolein is pervasive in all kinds of foods, and dietary intake is one of the main routes of human exposure to acrolein. Considering that acrolein is substantially eliminated after its formation during food processing and re-exposed in the human body after ingestion and metabolism, the origin and fate of acrolein must be traced in food. Focusing on molecular mechanisms, this review introduces the formation of acrolein in food and summarises both in vitro and in vivo fates of acrolein based on its interactions with small molecules and biomacromolecules. Future investigation of acrolein from different perspectives is also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266280PMC
http://dx.doi.org/10.3390/foods11131976DOI Listing

Publication Analysis

Top Keywords

acrolein
9
origin fate
8
fate acrolein
8
acrolein foods
4
foods acrolein
4
acrolein highly
4
highly toxic
4
toxic agent
4
agent promote
4
promote occurrence
4

Similar Publications

Characterization of key flavor compounds in cinnamon bark oil extracts using principal component analysis.

Food Res Int

January 2025

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Cinnamon is a widely used spice, known for its distinctive flavor and aromatic properties. Due to its lignified structure, the release of flavor components typically requires prolonged stewing (1-2 h). To simulate the release of flavor components during stewing, this study employed corn oil for extraction, avoiding the use of organic solvents.

View Article and Find Full Text PDF

The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing.

Toxics

November 2024

Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April 2023, focusing on VOC concentrations and speciations, diurnal variations, ozone formation potential (OFP), source identification, and associated health risks. The results revealed an average total VOC (TVOC) concentration of 15.

View Article and Find Full Text PDF

Purpose: The current study aimed to investigate the trophocidal and cysticidal activities of cinnamaldehyde (Cinn), a natural compound with known antimicrobial properties, against environmental and reference strains of Acanthamoeba castellanii. Additionally, we explored the potential benefits of Cinn formulated as a nanoemulsion (Cinn-NE) in enhancing its efficacy.

Methods: Cinn-NE was prepared using the ultrasonic emulsification method.

View Article and Find Full Text PDF

As the petrochemical industry grows, environmental and human health issues associated with petroleum refining and chemical processes also increase. Consequently, several studies have been conducted on this topic. However, the results of the current research vary, and a comprehensive review is lacking.

View Article and Find Full Text PDF

Rh(III)-Catalyzed Double C-H Activation toward Peptide-Benzazepine Conjugates.

Org Lett

December 2024

Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.

We herein report the efficient synthesis of peptide-benzazepine conjugates from Lys-based peptides and acroleins via Rh(III)-catalyzed double C-H activation. This reaction features mild reaction conditions, broad scope, high atom and step economies, and excellent chemo- and site selectivity. The synthetic utility of this strategy is further demonstrated by scale-up experiments and product derivatizations, including diverse late-stage ligations based on the aldehyde moiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!