The transmission spectrum of apples is affected by the fruit's size, which leads to poor prediction performance of the soluble solids content (SSC) models built for their different apple sizes. In this paper, three sets of near infrared (NIR) spectra of apples with various apple diameters were collected by applying NIR spectroscopy detection equipment to compare the spectra differences among various apple diameter groups. The NIR spectra of apples were corrected by studying the extinction rates within different apples. The corrected spectra were used to develop a partial least squares prediction model for their soluble solids content. Compared with the prediction model of the soluble solids content of apples without size correction, the R of PLSR improved from 0.769 to 0.869 and RMSEP declined from 0.990 to 0.721 in the small fruit diameter group; the R of PLSR improved from 0.787 to 0.932 and RMSEP declined from 0.878 to 0.531 in the large fruit diameter group. The proposed apple spectra correction method is effective and can be used to reduce the influence of sample diameter on NIR spectra.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266150PMC
http://dx.doi.org/10.3390/foods11131923DOI Listing

Publication Analysis

Top Keywords

soluble solids
16
solids content
16
nir spectra
12
spectra apples
8
apples corrected
8
prediction model
8
model soluble
8
plsr improved
8
rmsep declined
8
fruit diameter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!