In this study, a self-cooling laboratory system was used for pressure−shift freezing (PSF), and the effects of pressure−shift freezing (PSF) at 150 MPa on the quality of largemouth bass (Micropterus salmoides) during frozen storage at −30 °C were evaluated and compared with those of conventional air freezing (CAF) and liquid immersion freezing (LIF). The evaluated thawing loss and cooking loss of PSF were significantly lower than those of CAF and LIF during the whole frozen storage period. The thawing loss, L* value, b* value and TBARS of the frozen fish increased during the storage. After 28 days storage, the TBARS values of LIF and CAF were 0.54 and 0.65, respectively, significantly higher (p < 0.05) than the 0.25 observed for PSF. The pH of the samples showed a decreasing trend at first but then increased during the storage, and the CAF had the fastest increasing trend. Based on Raman spectra, the secondary structure of the protein in the PSF-treated samples was considered more stable. The α-helix content of the protein in the unfrozen sample was 59.3 ± 7.22, which decreased after 28 days of frozen storage for PSF, LIF and CAF to 48.5 ± 3.43, 39.1 ± 2.35 and 33.4 ± 4.21, respectively. The results showed that the quality of largemouth bass treated with PSF was better than LIT and CAF during the frozen storage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265678PMC
http://dx.doi.org/10.3390/foods11131842DOI Listing

Publication Analysis

Top Keywords

frozen storage
16
air freezing
8
liquid immersion
8
frozen fish
8
storage
8
pressure−shift freezing
8
freezing psf
8
quality largemouth
8
largemouth bass
8
thawing loss
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!