Nanopore sequencing is an emerging technology that reads DNA by utilizing a unique method of detecting nucleic acid sequences and identifies the various chemical modifications they carry. Deep learning has increased in popularity as a useful technique to solve many complex computational tasks. 'Adaptive sequencing' is an implementation of selective sequencing, intended for use on the nanopore sequencing platform. In this study, we demonstrated an alternative method of software-based selective sequencing that is performed in real time by combining nanopore sequencing and deep learning. Our results showed the feasibility of using deep learning for classifying signals from only the first 200 nucleotides in a raw nanopore sequencing signal format. This was further demonstrated by comparing the accuracy of our deep learning classification model across data from several human cell lines and other eukaryotic organisms. We used custom deep learning models and a script that utilizes a 'Read Until' framework to target mitochondrial molecules in real time from a human cell line sample. This achieved a significant separation and enrichment ability of 2.3-fold. In a series of very short sequencing experiments (10, 30 and 120 min), we identified genomic and mitochondrial reads with accuracy above 90%, although mitochondrial DNA comprised only 0.1% of the total input material. The uniqueness of our method is the ability to distinguish two groups of DNA even without a labeled reference. This contrasts with studies that required a well-defined reference, whether of a DNA sequence or of another type of representation. Additionally, our method showed higher correlation to the theoretically possible enrichment factor, compared with other published methods. We believe that our results will lay the foundation for rapid and selective sequencing using nanopore technology and will pave the approach for clinical applications that use nanopore sequencing data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbac251 | DOI Listing |
Biomed Phys Eng Express
January 2025
National School of Electronics and Telecommunication of Sfax, Sfax rte mahdia, sfax, sfax, 3012, TUNISIA.
Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.
View Article and Find Full Text PDFBiol Reprod
January 2025
Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot 011517, China.
Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).
View Article and Find Full Text PDFDentomaxillofac Radiol
January 2025
Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Yangsan, 50612, Korea.
Objectives: This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized three-dimensional (3D) reconstruction zone centered on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.
Methods: This retrospective study analyzed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.
J Food Sci
January 2025
College of Electronics and Engineering, Heilongjiang University, Harbin, China.
Bruises can affect the appearance and nutritional value of apples and cause economic losses. Therefore, the accurate detection of bruise levels and bruise time of apples is crucial. In this paper, we proposed a method that combines a self-designed multispectral imaging system with deep learning to accurately detect the level and time of bruising on apples.
View Article and Find Full Text PDFNetwork
January 2025
Department of Computer Science and Engineering, Knowledge Institute of Technology, Salem, India.
The image retrieval is the process of retrieving the relevant images to the query image with minimal searching time in internet. The problem of the conventional Content-Based Image Retrieval (CBIR) system is that they produce retrieval results for either colour images or grey scale images alone. Moreover, the CBIR system is more complex which consumes more time period for producing the significant retrieval results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!