Background: Many genotoxicity tests allow us to understand the mechanism of damages on genetic material occurring in living organisms against various physical and chemical agents. One of them is the Comet test. The current study aimed to evaluate genotoxic caused by picloram and dicamba to root meristems of Allium cepa utilizing comet assay.
Methods: Two different protocols were used for rooting and auxin/pesticide application. (i) A. cepa bulbs were rooted in MS medium and then treated with Murashige and Skoog (MS) medium (control) and 0.67, 1.34, 2.01, 2.68, 3.35, 4.02, and 8.04 mg/L of picloram and dicamba using aseptic tissue culture techniques. (ii) A. cepa bulbs were then rooted in bidistilled water and treated with 0 (control), 0.67, 1.34, 2.01, 2.68, 3.35, 4.02, and 8.04 mg/L of picloram and dicamba in distilled water. The A. cepa root tip cells in both treatment groups were examined using comet test to find the possible DNA damaging effects of picloram and dicamba.
Results: The results obtained at all the concentrations were statistically compared with their control groups. Almost at all the concentrations of Picloram and dicamba increased comet tail intensity (%) and tail moment in roots treated in MS medium. Two highest concentrations revealed toxic effect. On the other hand, DNA damaging effect of both auxins was only noted on the highest (> 4.02 mg/L) in roots treated in distilled water.
Conclusions: This study approve and confirm genotoxic effects of how growth regulators on plants. These findings give an evidence of DNA damage in A. cepa. Therefore, both picloram and dicamba should only be used in appropriate and recommended concentrations in agriculture to conserve ecosystem and to pose minimum threat to life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-022-07712-7 | DOI Listing |
Plants (Basel)
April 2024
Plant Synthetic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Auxin is a crucial hormone that regulates various aspects of plant growth and development. It exerts its effects through multiple signaling pathways, including the TIR1/AFB-based transcriptional regulation in the nucleus. However, the specific role of auxin receptors in determining developmental features in the strawberry () remains unclear.
View Article and Find Full Text PDFBiol Futur
June 2023
Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey.
Dicamba, paraquat, picloram, clopyralid and linuron are herbicides widely used in agriculture. The aim of the present study is to evaluate the toxicity effects of the herbicides used on survival, fertility and length of Caenorhabditis elegans. Kaplan-Meier Survival Analysis method was used to identify the toxicity effect of herbicides on survival, and ANOVA and Post Hoc tests were used to determine the toxicity effects on fertility and length.
View Article and Find Full Text PDFMol Biol Rep
December 2022
Science Faculty, Department of Biology, Gazi University, Ankara, Turkey.
Background: Many genotoxicity tests allow us to understand the mechanism of damages on genetic material occurring in living organisms against various physical and chemical agents. One of them is the Comet test. The current study aimed to evaluate genotoxic caused by picloram and dicamba to root meristems of Allium cepa utilizing comet assay.
View Article and Find Full Text PDFEnviron Health Perspect
September 2021
Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA.
Background: Pesticide exposure is associated with many long-term health outcomes; the potential underlying mechanisms are not well established for most associations. Epigenetic modifications, such as DNA methylation, may contribute. Individual pesticides may be associated with specific DNA methylation patterns but no epigenome-wide association study (EWAS) has evaluated methylation in relation to individual pesticides.
View Article and Find Full Text PDFPLoS One
November 2021
School of Agriculture and Environment, Massey University, Palmerston North, New Zealand.
Soliva sessilis is a troublesome annual weed species in New Zealand turfgrass. This weed has been controlled selectively in New Zealand turfgrass for many years using pyridine herbicides such as clopyralid. However, in some golf courses, the continuous application of pyridine herbicides has resulted in the selection of S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!