Pregnancy represents a crucial period in which several exposures-and especially maternal diet-might shape children's health. Thus, identifying how maternal dietary intakes early affect biological aging in children represents a public health mission. We aimed to assess the relationship between maternal intake of nutrients in early pregnancy and telomere length of cell-free circulating DNA (cfDNA) from amniotic fluid. We used data and samples from the ongoing prospective "Mamma & Bambino" study, which recruits mother-child pairs from Catania at the first prenatal visit. Maternal nutrient intakes were assessed using a Food Frequency Questionnaire, while relative telomere length of cfDNA was assessed by real-time polymerase chain reaction. Our analysis included 174 mother-child pairs. The intakes of iron, vitamin B1, and magnesium were positively correlated with relative telomere length (p-values < 0.05). However, only the intake of magnesium was positively associated with relative telomere length, after applying a linear regression model (β = 0.002; SE = 0.001; p = 0.024). Magnesium deficiency was negatively associated with relative telomere length after adjusting for the same covariates (β = -0.467; SE = 0.176; p = 0.009). To our knowledge, this is the first evidence of a positive relationship between maternal nutrient intake and telomere length of cfDNA. Further efforts are needed for deeply investigating the effect of maternal dietary intakes on telomere length, in order to develop effective public health strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270384PMC
http://dx.doi.org/10.1038/s41598-022-15370-9DOI Listing

Publication Analysis

Top Keywords

telomere length
16
nutrient intakes
8
length cell-free
8
cell-free circulating
8
circulating dna
8
amniotic fluid
8
mother-child pairs
8
relative telomere
8
telomere
4
intakes telomere
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!