Groove, understood as an enjoyable compulsion to move to musical rhythms, typically varies along an inverted U-curve with increasing rhythmic complexity (e.g., syncopation, pickups). Predictive coding accounts posit that moderate complexity drives us to move to reduce sensory prediction errors and model the temporal structure. While musicologists generally distinguish the effects of pickups (anacruses) and syncopations, their difference remains unexplored in groove. We used pupillometry as an index to noradrenergic arousal while subjects listened to and rated drumbeats varying in rhythmic complexity. We replicated the inverted U-shaped relationship between rhythmic complexity and groove and showed this is modulated by musical ability, based on a psychoacoustic beat perception test. The pupil drift rates suggest that groovier rhythms hold attention longer than ones rated less groovy. Moreover, we found complementary effects of syncopations and pickups on groove ratings and pupil size, respectively, discovering a distinct predictive process related to pickups. We suggest that the brain deploys attention to pickups to sharpen subsequent strong beats, augmenting the predictive scaffolding's focus on beats that reduce syncopations' prediction errors. This interpretation is in accordance with groove envisioned as an embodied resolution of precision-weighted prediction error.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270355 | PMC |
http://dx.doi.org/10.1038/s41598-022-15763-w | DOI Listing |
Nat Commun
January 2025
Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA.
Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation of materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids.
View Article and Find Full Text PDFNature
January 2025
Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
Reproduction, development and homeostasis depend on motile cilia, whose rhythmic beating is powered by a microtubule-based molecular machine called the axoneme. Although an atomic model of the axoneme is available for the alga Chlamydomonas reinhardtii, structures of mammalian axonemes are incomplete. Furthermore, we do not fully understand how molecular structures of axonemes vary across motile-ciliated cell types in the body.
View Article and Find Full Text PDFAdv Gerontol
January 2025
Belgorod State National Research University, 85 build. 10 Pobedy str., Belgorod 308015, Russian Federation, e-mail:
The review presents the results of long-term research conducted by the staff of the Saint-Petersburg Institute of Bioregulation and Gerontology, dedicated to the study of the biological activity of peptide bioregulators at all levels of a living organism's organization. This review compares the findings of domestic and international studies in this field. At the same time, the priority of Russian scientists in the use of buccal epithelium as a diagnostic marker of age-associated pathology is indicated.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Entomology and Nematology, University of California, Davis, Davis, California, USA.
Plant-microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar-inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators.
View Article and Find Full Text PDFBMC Genomics
December 2024
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China.
Background: Nuptial pads, a typical sexually dimorphic trait in anurans, are located on the first digit of the male forelimb in Rana chensinensis and exhibit morphological changes synchronized with breeding cycles. However, the genetic mechanisms underlying its formation and seasonal changes remain poorly understood.
Results: To identify genes and biological processes associated with the development and seasonal variations of nuptial pads, we conducted a comprehensive transcriptome analysis on nuptial pads and hind toe skin across both sexes at different breeding periods in R.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!