The need to determine permeability at different stages of evaluation, completion, optimization of Enhanced Oil Recovery (EOR) operations, and reservoir modeling and management is reflected. Therefore, various methods with distinct efficiency for the evaluation of permeability have been proposed by engineers and petroleum geologists. The oil industry uses acoustic and Nuclear Magnetic Resonance (NMR) loggings extensively to determine permeability quantitatively. However, because the number of available NMR logs is not enough and there is a significant difficulty in their interpreting and evaluation, the use of acoustic logs to determine the permeability has become very important. Direct, continuous, and in-reservoir condition estimation of permeability is a unique feature of the Stoneley waves analysis as an acoustic technique. In this study, five intelligent mathematical methods, including Adaptive Network-Based Fuzzy Inference System (ANFIS), Least-Square Support Vector Machine (LSSVM), Radial Basis Function Neural Network (RBFNN), Multi-Layer Perceptron Neural Network (MLPNN), and Committee Machine Intelligent System (CMIS), have been performed for calculating permeability in terms of Stoneley and shear waves travel-time, effective porosity, bulk density and lithological data in one of the naturally-fractured and low-porosity carbonate reservoirs located in the Southwest of Iran. Intelligent models have been improved with three popular optimization algorithms, including Coupled Simulated Annealing (CSA), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). Among the developed models, the CMIS is the most accurate intelligent model for permeability forecast as compared to the core permeability data with a determination coefficient (R) of 0.87 and an average absolute deviation (AAD) of 3.7. Comparing the CMIS method with the NMR techniques (i.e., Timur-Coates and Schlumberger-Doll-Research (SDR)), the superiority of the Stoneley method is demonstrated. With this model, diverse types of fractures in carbonate formations can be easily identified. As a result, it can be claimed that the models presented in this study are of great value to petrophysicists and petroleum engineers working on reservoir simulation and well completion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270338PMC
http://dx.doi.org/10.1038/s41598-022-15869-1DOI Listing

Publication Analysis

Top Keywords

determine permeability
12
permeability
8
neural network
8
insights permeability
4
permeability determination
4
determination coupling
4
stoneley
4
coupling stoneley
4
stoneley wave
4
wave propagation
4

Similar Publications

Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.

View Article and Find Full Text PDF

Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.

View Article and Find Full Text PDF

The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.

View Article and Find Full Text PDF

Aims: This study explores the link between body mass index (BMI), intestinal permeability, and associated changes in anthropometric and impedance parameters, lipid profiles, inflammatory markers, fecal metabolites, and gut microbiota taxa composition in participants having excessive body mass.

Methods: A cohort of 58 obese individuals with comparable diet, age, and height was divided into three groups based on a priori clustering analyses that fit with BMI class ranges: Group I (25-29.9), Group II (30-39.

View Article and Find Full Text PDF

Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties.

Foods

January 2025

Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material for film production. Therefore, the present study aimed at producing an active film with antimicrobial properties using starch extracted from cassava waste and oil extracted from cloves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!