AI Article Synopsis

  • Recent research has focused on synthesizing zinc oxide/malachite nanocomposites coated with chitosan for their potential wound healing properties.
  • The study assessed various biomedical effects, including antibacterial activity, antioxidant capabilities, and changes in gene expressions related to inflammation and healing.
  • Results showed that these nanocomposites not only exhibited strong antibacterial effects but also enhanced wound healing, suggesting their promising application in ointments for treating infected wounds, pending further clinical studies.

Article Abstract

Recently, nanocomposites produced from clays and metals coated with chitosan have shown wound healing activity. This study aimed to synthesize the zinc oxide/malachite nanocomposite (ZnO/Mlt-NC) and its coating form with chitosan (ZnO/Mlt/Chsn-NC). Physicochemical characterization of the produced nanocomposites was investigated. Biomedical effects of nanocomposites, such as in vivo and in vitro antibacterial activity, antioxidant properties, cytotoxicity, and modulation in the gene expressions of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) and histopathological parameters, were also investigated. Expression intensities of basic fibroblast growth factor (bFGF) and tumor necrosis factor alpha (TNF-α) were also investigated by immunofluorescence staining. To investigate biomedical effects under in vivo conditions, infected wounds were induced and inoculated with Staphylococcus aureus (ATCC 25923), and Pseudomonas aeruginosa (ATCC 27853). The results indicated spherical ZnO nanoparticles on the surface of malachite and strong antibacterial activity and antioxidant properties. The ointments produced from the nanocomposites also exhibited wound healing activity. The administration of the ointments prepared from ZnO/Mlt, and ZnO/Mlt/Chsn NCs decreased the expressions of IL-1β, IL-6, and TNF-α, while it increased the expressions of IL-10, TGF-β and bFGF. In sum, the nanocomposites produced from ZnO, malachite, and chitosan had better biological activity than ZnO/Malachite nanocomposites. We suggest applying ZnO/Mlt/Chsn nanocomposites in the structure of ointments to treat infected wounds after future clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270442PMC
http://dx.doi.org/10.1038/s41598-022-15768-5DOI Listing

Publication Analysis

Top Keywords

nanocomposites produced
8
wound healing
8
healing activity
8
produced nanocomposites
8
biomedical effects
8
antibacterial activity
8
activity antioxidant
8
antioxidant properties
8
infected wounds
8
nanocomposites
7

Similar Publications

The abnormal expression of acetylcholinesterase (AChE) is linked to the development of various diseases. Accurate determination of AChE activity as well as screening AChE inhibitors (AChEIs) holds paramount importance for early diagnosis and treatment of AChE-related diseases. Herein, a fluorescent and colorimetric dual-channel probe based on gold nanoclusters (AuNCs) and manganese dioxide nanosheets (MnO NSs) was developed.

View Article and Find Full Text PDF

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.

View Article and Find Full Text PDF

The rapid progress in nanotechnology has introduced multifunctional iron oxide nanoparticles as promising agents in cancer treatment. This research focused on the synthesis and assessment of citric-acid-coated, folic-acid-conjugated nanoparticles loaded with doxorubicin, evaluating their therapeutic potential in tumor models. An advanced automated continuous technology line (CTL) utilizing a controlled co-precipitation method was employed to produce highly dispersive, multifunctional nanofluids with a narrow size distribution.

View Article and Find Full Text PDF

Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells.

Mar Drugs

December 2024

Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.

The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!