A dynamical study of a fuzzy epidemic model of Mosquito-Borne Disease.

Comput Biol Med

Department of Mathematics and Statistics, The University of Lahore, Lahore, 5400, Pakistan.

Published: September 2022

Numerical models help us to understand the transmission dynamics of infectious diseases. Since vectors transmit many diseases, vector host models are very important. The transmission dynamics of Dengue fever with an incubation period of the virus with fuzzy parameters have been analyzed in this article. Sometimes it is very difficult and almost impossible to collect numerical data as a fixed value. Due to the lack of precise numerical data for the parameters, the fuzzy model is considered here. Fuzzy theory is a very powerful mathematical tool for dealing with imprecision and uncertainties. In this article, the chance of the occurrence of dengue infection β(a), the recovery rate r(a) and the mortality rate of the human population μ(a) due to dengue fever are considered fuzzy numbers. The stability of equilibrium points of the model has been determined and a reproduction number has been derived respectively in a fuzzy sense. A numerical model is designed for the studied model having fuzzy parameters and some numerical experiments are performed which indicate that the proposed method shows positivity, stability, and convergence at each time step size. Hence the method preserves the essential features of the dynamic epidemic models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105673DOI Listing

Publication Analysis

Top Keywords

transmission dynamics
8
dengue fever
8
fuzzy parameters
8
numerical data
8
considered fuzzy
8
fuzzy
7
model
5
numerical
5
dynamical study
4
study fuzzy
4

Similar Publications

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

HIV infection implicates a spectrum of tissues in the human body starting with viral transmission in the anogenital tract and subsequently persisting in lymphoid tissues and brain. Though studies using isolated cells have contributed significantly towards our understanding of HIV infection, the tissue microenvironment is characterised by a complex interplay of a range of factors, all of which can influence the course of infection but are otherwise missed in ex vivo studies. To address this knowledge gap, it is necessary to investigate the dynamics of infection and the host immune response in situ using imaging-based approaches.

View Article and Find Full Text PDF

Evolution of SARS-CoV-2 in white-tailed deer in Pennsylvania 2021-2024.

PLoS Pathog

January 2025

Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

SARS-CoV-2 continues to transmit and evolve in humans and animals. White-tailed deer (Odocoileus virginianus) have been previously identified as a zoonotic reservoir for SARS-CoV-2 with high rates of infection and probable spillback into humans. Here we report sampling 1,127 white-tailed deer (WTD) in Pennsylvania, and a genomic analysis of viral dynamics spanning 1,017 days between April 2021 and January 2024.

View Article and Find Full Text PDF

This study examined the ability of the following five dynamic models for predicting pulmonary tuberculosis (PTB) incidence in a prison setting: the Wells-Riley equation, two Rudnick & Milton-proposed models based on air changes per hour and liters per second per person, the Issarow et al. model, and the applied susceptible-exposed-infected-recovered (SEIR) tuberculosis (TB) transmission model. This 1-year prospective cohort study employed 985 cells from three Thai prisons (one prison with 652 cells as the in-sample, and two prisons with 333 cells as the out-of-sample).

View Article and Find Full Text PDF

Mathematical and statistical methods are invaluable in epidemiological investigations, enhancing our understanding of disease transmission dynamics and informing effective control measures. In this study, we presented a method to estimate transmissibility using patient-level data, with application to the 2015 MERS outbreak at Pyeongtaek St. Mary's Hospital, the Republic of Korea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!