Reprogramming of H3K9me3-dependent heterochromatin is required for early development. How H3K9me3 is involved in early human development remains, however, largely unclear. Here, we resolve the temporal landscape of H3K9me3 during human preimplantation development and its regulation for diverse hominoid-specific retrotransposons. At the 8-cell stage, H3K9me3 reprogramming at hominoid-specific retrotransposons termed SINE-VNTR-Alu (SVA) facilitates interaction between certain promoters and SVA-derived enhancers, promoting the zygotic genome activation. In trophectoderm, de novo H3K9me3 domains prevent pluripotent transcription factors from binding to hominoid-specific retrotransposons-derived regulatory elements for inner cell mass (ICM)-specific genes. H3K9me3 re-establishment at SVA elements in the ICM is associated with higher transcription of DNA repair genes, when compared with naive human pluripotent stem cells. Our data demonstrate that species-specific reorganization of H3K9me3-dependent heterochromatin at hominoid-specific retrotransposons plays important roles during early human development, shedding light on how the epigenetic regulation for early development has evolved in mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2022.06.006DOI Listing

Publication Analysis

Top Keywords

hominoid-specific retrotransposons
16
human preimplantation
8
preimplantation development
8
h3k9me3-dependent heterochromatin
8
early development
8
early human
8
human development
8
h3k9me3
6
development
6
hominoid-specific
5

Similar Publications

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes', with a proposed role in contributing to human bipedalism. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution.

View Article and Find Full Text PDF

RDA coupled with deep sequencing detects somatic SVA-retrotranspositions and mosaicism in the human brain.

Front Cell Dev Biol

June 2023

Division of Anthropology, Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.

Cells of the developing human brain are affected by the progressive acquisition of genetic and epigenetic alterations that have been reported to contribute to somatic mosaicism in the adult brain and are increasingly considered a possible cause of neurogenetic disorders. A recent work uncovered that the copy-paste transposable element (TE) LINE-1 (L1) is mobilized during brain development, and thus mobile non-autonomous TEs like AluY and SINE-VNTR-Alu (SVA) families can use L1 activity in trans, leading to insertions that may influence the variability of neural cells at genetic and epigenetic levels. In contrast to SNPs and when considering substitutional sequence evolution, the presence or absence of TEs at orthologous loci represents highly informative clade markers that provide insights into the lineage relationships between neural cells and how the nervous system evolves in health and disease.

View Article and Find Full Text PDF

SINE-VNTR-Alu (SVA) retrotransposons arose and expanded in the genome of hominoid primates concurrent with the slowing of brain maturation. We report genes with intronic SVA transposons are enriched for neurodevelopmental disease and transcribed into long non-coding SVA-lncRNAs. Human-specific SVAs in microcephaly CDK5RAP2 and epilepsy SCN8A gene introns repress their expression via transcription factor ZNF91 to delay neuronal maturation.

View Article and Find Full Text PDF

Dynamic reprogramming of H3K9me3 at hominoid-specific retrotransposons during human preimplantation development.

Cell Stem Cell

July 2022

Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China. Electronic address:

Reprogramming of H3K9me3-dependent heterochromatin is required for early development. How H3K9me3 is involved in early human development remains, however, largely unclear. Here, we resolve the temporal landscape of H3K9me3 during human preimplantation development and its regulation for diverse hominoid-specific retrotransposons.

View Article and Find Full Text PDF

Mammalian germ cells stem from primordial germ cells (PGCs). Although the gene regulatory network controlling the development of germ cells such as PGCs is critical for ensuring gamete integrity, substantial differences exist in this network among mammalian species, suggesting that this network has been modified during mammalian evolution. Here, we show that a hominoid-specific group of endogenous retroviruses, LTR5_Hs, discloses enhancer-like signatures in human in vitro-induced PGCs, PGC-like cells (PGCLCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!