Highly efficient oxygen reduction and oxygen evolution reactions have the critical role in the practical application of zinc-air batteries. Herein, doping engineering strategy has been adopted by construction of Se/Fe-doped in CoO/N-doped carbon nanosheets (denoted as Se/Fe-CoO/N-CNs) catalyst for boosting oxygen electrocatalytic activity. The achieved Se/Fe-CoO/N-CNs catalyst presents high-performances electrocatalytic characteristics, which exhibits a small overpotential gap (0.79 V), excellent oxygen evolution reaction activity with a small overpotential of 361 mV and a low Tafel slope of 57.3 mV dec at 10 mA cm as well as excellent oxygen reduction reaction activity with a large half-wave potential of 0.8 V, also surpassing the majority of reported CoO-based electrocatalysts. The outstanding catalytic performances are benefiting from the contributions between Se/Fe doping engineering and N-doped carbon nanosheets optimizing the electronic structure of Co species, endowing more active sites, enhancing the intrinsic catalytic activity and accelerating charge transfer rate for oxygen electrocatalytic process. Particularly, the as-fabricated zinc-air batteries with Se/Fe-CoO/N-CNs as air cathode presents a high open circuit potential of 1.41 V, a prominent highly efficient peak power density of 141.3 mW cm, a high specific capacity of 765.6 mAh g and energy density 861.3 Wh kg at current density of 10 mA cm as well as an excellent cycling stability, which are exceeding the commercial Pt/C-RuO based zinc-air batteries. This work lays a foundation for design and development of high-performance bifunctional cobalt-based electrocatalysts for rechargeable metal-air batteries application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.06.147 | DOI Listing |
Langmuir
January 2025
College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, P. R. China.
In the realm of zinc-air batteries, high bifunctional catalytic efficacy is intimately tied to the evaluation of catalysts. Consequently, the pursuit of proficient bifunctional catalysts that can efficiently catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a paramount objective in this research area. In this study, the spiny cobalt tetroxide (CoO) encapsulated hollow carbon spheres (HCSs) are constructed by anchoring CoO onto HCS via hydrothermal or annealing treatment.
View Article and Find Full Text PDFInorg Chem
January 2025
Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China.
Promoting the rate of the oxygen reduction reaction (ORR) is critical for boosting the overall energy efficiency of the flexible zinc-air batteries (FZABs). Inspired by nature, we designed "branch-leaf" like hierarchical porous carbon nanofibers with ultralow loadings of Ir nanoparticles (NPs) derived from covalent-organic framework/metal-organic framework (COF/MOF) core-shell hybrids. The as-obtained Ir/FeZn-hierarchical porous carbon nanofibers (HPCNFs) showcase enhanced ORR performance, and the ultralow Ir loading reduces the cost while maintaining catalytic capacity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
Due to the high configuration entropy, unique atomic arrangement, and electronic structures, high-entropy materials are being actively pursued as bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable zinc-air batteries (ZABs). However, a relevant strategy to enhance the catalytic activity of high-entropy materials is still lacking. Herein, a hole doping strategy has been employed to enable the high-entropy perovskite La(CrMnFeCoNi)O to effectively catalyze the ORR and OER.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China.
Metal-air batteries desire highly active, durable, and low-cost oxygen reduction catalysts to replace expensive platinum (Pt). The Fe-N-C catalyst is recognized as the most promising candidate for Pt; however, its durability is hindered by carbon corrosion, while activity is restricted due to limited oxygen for the reaction. Herein, TiN is creatively designed to be hybridized with Fe-N-C (TiN/Fe-N-C) to relieve carbon corrosion and absorb more oxygen when catalyzing oxygen reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!