Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Existing lithium-ion batteries struggle to achieve high-rate discharge stability. To address this problem, this study combines resin-based carbon nanospheres with a double electric layer effect and cathode materials with lithium-ion intercalation/delithiation behavior to form a LiNiCoMnO/resin-based carbon-sphere hybrid electrode. For further improvement in electron contact and tap density, the size of the carbon nanospheres was controlled by changing the synthetic parameters, and a size-matched spatial structure model of each component within the hybrid electrode was constructed. Considering the excellent rate capability of small-sized hard carbon, hard-carbon nanospheres derived from glucose were employed as the anode active material to assemble a capacitor battery. With the integration of characteristics of both lithium-ion batteries and supercapacitors, the as-prepared new capacitor battery exhibited a specific capacity of 146.1 mAh/g at 0.1C and an energy density of 474.5 Wh/kg on the cathode active material mass, a reversible capacity of 113.2 mAh/g at 1C after 200 cycles with retention of 85.3%, and the capacity remained at 82 mAh/g even at a high current rate of 10C. These results offer insights into the design of energy storage devices with excellent cycling stability and rate capability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.06.111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!