Chromosomal aberrations are among the most important prognostic parameters in AML, and conventional cytogenetic analysis remains essential for risk stratification. In this report, we describe an adult male patient with a high percentage of circulating blasts, pathologically confirmed as AML with maturation. Cytogenetic analysis of a bone marrow sample revealed heptasomy 21 and trisomy 13 within a complex karyotype of 52,XY,der(2)t(2;13)(q33.3;q32.1),+13,+21,+21,+21,+21,+21 in all 20 cells examined, which was confirmed by metaphase FISH. Chromosomal microarray analysis (CMA) revealed complete loss of heterozygosity (LOH) of chromosome 21, supporting a common origin. In addition, LOH of chromosome 1p, trisomy 13, and partial tetrasomy of 13q and partial monosomy of 2q as a result of an unbalanced translocation between chromosomes 2 and 13 were observed. Molecular analysis identified two pathogenic missense variants: RUNX1 p.D198Y and SRSF2 p.P95R. The clonal allele ratio of RUNX1 p.D198Y was consistent with all copies of chromosome 21 in the leukemic clone carrying the mutation. Within the medical literature, there are no reports of heptasomy 21 for comparison; however, there are reports of AML with either polysomy 21 or trisomy 13. Our results suggest that even relatively 'common' AML aneuploidies may be associated with much more complex genomic changes, including loss of heterozygosity, which impact prognosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cancergen.2022.07.001 | DOI Listing |
Int J Mol Sci
January 2025
Department of Women's and Children's Health, University of Padova, 35128 Padova, Italy.
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder that causes a range of developmental problems including cognitive and behavioral impairment and learning disabilities. FXS is caused by full mutations (FM) of the gene expansions to over 200 repeats, with hypermethylation of the cytosine-guanine-guanine (CGG) tandem repeated region in its promoter, resulting in transcriptional silencing and loss of gene function. Female carriers of FM are typically less impaired than males.
View Article and Find Full Text PDFBackground/objectives: The failure of physiological left-right (LR) patterning, a critical embryological process responsible for establishing the asymmetric positioning of internal organs, leads to a spectrum of congenital abnormalities characterized by laterality defects, collectively known as "heterotaxy". biallelic variants have recently been associated with heterotaxy syndrome and congenital heart defects (CHD). However, the genotype-phenotype correlations and the underlying pathogenic mechanisms remain poorly understood.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
Background/objectives: A heterozygous mutation in the gene is responsible for autosomal dominant non-syndromic hearing loss (DFNA6/14/38) and Wolfram-like syndrome, which is characterized by bilateral sensorineural hearing loss with optic atrophy and/or diabetes mellitus. However, detailed clinical features for the patients with the heterozygous p.A684V variant remain unknown.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada.
Biallelic rare pathogenic loss-of-function (LOF) variants in lipoprotein lipase () cause familial chylomicronemia syndrome (FCS). Heterozygosity for these same variants is associated with a highly variable plasma triglyceride (TG) phenotype ranging from normal to severe hypertriglyceridemia (HTG), with longitudinal variation in phenotype severity seen often in a given carrier. Here, we provide an updated overview of genetic variation in in the context of HTG, with a focus on disease-causing and/or disease-associated variants.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
causes life-threatening infections in immunocompromised hosts, including hospitalized neonates. This pathogen is intrinsically resistant to fluconazole, while uncommon strains resistant to multiple antifungal drugs, including voriconazole, amphotericin B, and echinocandins, have also been reported from healthcare environments. Thus, understanding how spread, persist, and adapt to healthcare settings could help us develop better infection management strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!