A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Air Pollution and Pediatric Respiratory Hospitalizations: Effect Modification by Particle Constituents and Oxidative Potential. | LitMetric

Outdoor particulate and gaseous air pollutants impair respiratory health in children, and these associations may be influenced by particle composition. To examine whether associations between short-term variations in fine particulate air pollution, oxidant gases, and respiratory hospitalizations in children are modified by particle constituents (metals and sulfur) or oxidative potential. We conducted a case-crossover study of 10,500 children (0-17 years of age) across Canada. Daily fine particle mass concentrations and oxidant gases (nitrogen dioxide and ozone) were collected from ground monitors. Monthly estimates of fine particle constituents (metals and sulfur) and oxidative potential were also measured. Conditional logistic regression models were used to estimate associations between air pollutants and respiratory hospitalizations, above and below median values for particle constituents and oxidative potential. Lag-1 fine particulate matter mass concentrations were not associated with respiratory hospitalizations (odds ratio and 95% confidence interval per 10 μg/m increase in fine particulate matter: 1.004 [0.955-1.056]) in analyses ignoring particle constituents and oxidative potential. However, when models were examined above or below median metals, sulfur, and oxidative potential, positive associations were observed above the median. For example, the odds ratio and 95% confidence interval per 10 μg/m increase in fine particulate matter were 1.084 (1.007-1.167) when copper was above the median and 0.970 (0.929-1.014) when copper was below the median. Similar trends were observed for oxidant gases. Stronger associations were observed between outdoor fine particles, oxidant gases, and respiratory hospitalizations in children when metals, sulfur, and particle oxidative potential were elevated.

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.202205-0896OCDOI Listing

Publication Analysis

Top Keywords

oxidative potential
28
respiratory hospitalizations
20
particle constituents
20
fine particulate
16
oxidant gases
16
metals sulfur
16
constituents oxidative
12
sulfur oxidative
12
particulate matter
12
air pollution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!