Gas-fed zero-gap electrolyzers have recently emerged as attractive systems for limiting ohmic losses and costs associated with electrolytes and for optimizing energy efficiencies. Here, we report that using a dendritic Cu oxide (D-CuO) material deposited on a gas diffusion layer as the cathode of a gas-fed zero-gap membrane electrode assembly (MEA) system results in a very selective conversion of CO to ethylene. More specifically, CO reduction yielded ethylene with an FE up to 68% at 100-125 mA·cm with H as the only other gaseous product and the electrolysis could be carried out for several hours with good stability. Ethylene was also the major product during CO electrolysis (FE = 41%) at 125-150 mA·cm, reflecting the high selectivity of D-CuO for ethylene production. Such systems are relevant for tandem CO electroreduction processes, allowing energy efficiencies above 30%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c06068 | DOI Listing |
Plant Cell
January 2025
National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China.
The reddish apocarotenoid β-citraurin, produced by CAROTENOID CLEAVAGE DIOXYGENASE 4b (CsCCD4b), is responsible for peel reddening in citrus (Citrus spp.). Ethylene induces the characteristic red color of citrus peel, but the underlying molecular mechanism remains largely unclear.
View Article and Find Full Text PDFSci Rep
January 2025
LECIV - Civil Engineering Laboratory, UENF - State University of the North in Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, RJ, Brazil.
The correct choice of a stone aggregate for railway ballast is directly related to the stability, safety, efficiency, and maintenance costs of the track. The aggregate must meet several criteria to ensure it is the most appropriate material. Thus, the present study aimed to evaluate four distinct stones: two granites, a diabase, and a basalt, all mined in the eastern region of the state of São Paulo, Brazil, regarding their applicability as ballast.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hunan University, College of Materials Science and Engineering, South Lushan Road 2#, 410082, China, 410082, Changsha, CHINA.
Renewable electricity-driven electrochemical reduction of CO2 offers a promising route for production of high-value ethanol. However, the current state of this technology is hindered by low selectivity and productivity, primarily due to limited understanding of the atomic-level active sites involved in ethanol formation. Herein, we identify that the interfacial oxygen vacancy-neighboring Cu (Ov-Cu) pair sites are the active sites for CO2 electroreduction to ethanol.
View Article and Find Full Text PDFChemosphere
January 2025
University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:
The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China. Electronic address:
Postharvest fruit decay caused by pathogens is an important factor leading to product waste and economic losses, and fruit coating is considered an effective strategy to solve this problem due to its simple operation and effectiveness. In this study, nano modified chitosan film (CSC) was created by mixing chitosan (CS) and copper oxide nanoparticles (CuO NPs) synthesized using abandoned Ficus carica fruit. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra indicated the formation of intermolecular interactions between CS and CuO NPs in the composite film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!