Background: Glioblastoma is the most common and devastating primary brain cancer. Radiotherapy is standard of care; however, it is associated with brain radiation toxicity (BRT). This study used a multi-omics approach to determine whether BRT-related genes (RGs) harbor survival prognostic value and whether their encoded proteins represent novel therapeutic targets for glioblastoma.

Methods: RGs were identified through analysis of single-nucleotide variants associated with BRT (R-SNVs). Functional relationships between RGs were established using Protein-Protein Interaction networks. The influence of RGs and their functional groups on glioblastoma prognosis was evaluated using clinical samples from the Glioblastoma Bio-Discovery Portal database and validated using the Chinese Glioma Genome Atlas dataset. The identification of clusters of radiotoxic and putative pathogenic variants in proteins encoded by RGs was achieved by computational 3D structural analysis.

Results: We identified the BRT-related 15CAcBRT molecular signature with prognostic value in glioblastoma, by analysis of the COMT and APOE protein functional groups. Its external validation confirmed clinical relevance independent of age, MGMT promoter methylation status, and IDH mutation status. Interestingly, the genes IL6, APOE, and MAOB documented significant gene expression levels alteration, useful for drug repositioning. Biological networks associated with 15CAcBRT signature involved pathways relevant to cancer and neurodegenerative diseases. Analysis of 3D clusters of radiotoxic and putative pathogenic variants in proteins coded by RGs unveiled potential novel therapeutic targets in neuro-oncology.

Conclusions: 15CAcBRT is a BRT-related molecular signature with prognostic significance for glioblastoma patients and represents a hub for drug repositioning and development of novel therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925695PMC
http://dx.doi.org/10.1093/neuonc/noac171DOI Listing

Publication Analysis

Top Keywords

gene expression
8
glioblastoma patients
8
novel therapeutic
8
therapeutic targets
8
functional groups
8
clusters radiotoxic
8
radiotoxic putative
8
putative pathogenic
8
pathogenic variants
8
variants proteins
8

Similar Publications

Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.

Development

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.

View Article and Find Full Text PDF

Mining Silent Biosynthetic Gene Clusters for Natural Products in Filamentous Fungi.

Chem Biodivers

January 2025

Zhejiang University, Polytechnic Institute, 866 Yuhangtang Road, Hangzhou, CHINA.

Filamentous fungi are of great interest due to their powerful metabolic capabilities and potentials to produce abundant various secondary metabolites as natural products (NPs), some of which have been developed into pharmaceuticals. Furthermore, high-throughput genome sequencing has revealed tremendous cryptic NPs underexplored. Based on the development of in silico genome mining, various techniques have been introduced to rationally modify filamentous fungi,awakening the silent biosynthetic gene clusters (BGCs) and visualizing the NPs originally cryptic.

View Article and Find Full Text PDF

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!