Purpose: To examine the ex- vivo ability of explanted human tumors and normal tissue to activate liposomal mitomycin C lipidic prodrug (MLP) by releasing the active free drug form, mitomycin C (MMC).
Methods: We tested conversion of MLP to MMC in an ex vivo assay using explanted tissues obtained during routine surgery to remove primary tumors or metastases. Tumor and adjacent normal tissue were obtained from freshly explanted tumors and were immediately deep frozen at - 70 °C. On test day, the fragments were thawed, homogenized and incubated in the presence of a fixed amount of liposomal MLP at 37 °C for 1 h. We measured MLP and its rate of conversion to MMC by HPLC. Controls included plasma, malignant effusions, red blood cells, tumor cell lines, mouse liver, and buffer with dithiothreitol, a potent reducing agent.
Results: Most patients tested (16/20) were diagnosed with colo-rectal carcinoma. The average fraction of MLP cleaved per 100-mg tumor tissue (21.1%, SEM = 1.8) was greater than per 100-mg normal tissue (16.6%, SEM = 1.3). When the tumor and normal tissue samples were paired by patient, the difference was statistically significant (p = 0.022, paired t test). Biological fluids did not activate liposomal MLP, while normal liver tissue strongly does. Interestingly, the omental fatty tissue also greatly activated MLP.
Conclusions: Tumor tissue homogenates activate MLP with greater efficiency than the surrounding normal tissues, but far less than liver and adipose tissue. These observations demonstrate the bioavailability of liposomal MLP in human tumors, and its pharmacologic potential in cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-022-04451-1 | DOI Listing |
Methods Mol Biol
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
During development, cells undergo a sequence of specification events to form functional tissues and organs. To investigate complex tissue development, it is crucial to visualize how cell lineages emerge and to be able to manipulate regulatory factors with temporal control. We recently developed TEMPO (Temporal Encoding and Manipulation in a Predefined Order), a genetic tool to label with different colors and genetically manipulate consecutive cell generations in vertebrates.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.
ScarTrace is a CRISPR/Cas9-based genetic lineage tracing method that allows for uniquely barcoding the DNA of single cells at a target GFP sequence during developing zebrafish embryos. Single cells from barcoded adult zebrafish can be isolated from various tissues (e.g.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
Lineage tracing based on modern live imaging approaches enables to visualize, reconstruct, and analyze the developmental history, fate, and dynamic behaviors of cells in vivo in a direct, comprehensive, and quantitative manner. Light-sheet fluorescence microscopy (LSFM) has greatly boosted lineage tracing efforts, because fluorescently labeled specimens can be imaged in their entirety, over long periods of time, with high spatiotemporal resolution and minimal photodamage. In addition, an increasing arsenal of commercial and open-source software solutions for cell and nuclei segmentation and tracking can be employed to convert data from pixel-based to object-based representations, and to reconstruct the lineages of cells in their native context as they organize in tissues, organs, and whole organisms.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
Induced pluripotent stem cell (iPSC)-derived organoids provide models to study human organ development. Single-cell transcriptomics enables highly resolved descriptions of cell states within these systems; however, approaches are needed to directly determine the lineage relationship between cells. Here we provide a detailed protocol (Fig.
View Article and Find Full Text PDFSurg Radiol Anat
January 2025
Maxillo-Facial Surgery Department, Beaujon University Hospital, Clichy, France.
Purpose: The main objective of this study was to conduct a radioanatomical study of the osteo-myo-cutaneous scapulo-dorsal pedicled flap.
Methods: A radiological study was performed to study the anatomical variations of the dorsal scapular pedicle (origin, course of the deep branch of the dorsal scapular artery (DSA) in relation to the medial border of the scapula, perforators from the superficial branch of the DSA). Perforators from the superficial branch of the DSA were also identified on anatomical subjects, and their cutaneous vascular territory was determined.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!