In ischemic stroke and post-traumatic brain injury (TBI), blood-brain barrier disruption leads to leaking plasma amino acids (AA) into cerebral parenchyma. Bleeding in hemorrhagic stroke and TBI also release plasma AA. Although excitotoxic AA were extensively studied, little is known about non-excitatory AA during hypoxic injury. Hypoxia-induced synaptic depression in hippocampal slices becomes irreversible with non-excitatory AA, alongside their intracellular accumulation and increased tissue electrical resistance. Four non-excitatory AA (l-alanine, glycine, l-glutamine, l-serine: AGQS) at plasmatic concentrations were applied to slices from mice expressing EGFP in pyramidal neurons or astrocytes during normoxia or hypoxia. Two-photon imaging, light transmittance (LT) changes, and electrophysiological field recordings followed by electron microscopy in hippocampal CA1 st. radiatum were used to monitor synaptic function concurrently with cellular swelling and injury. During normoxia, AGQS-induced increase in LT was due to astroglial but not neuronal swelling. LT raise during hypoxia and AGQS manifested astroglial and neuronal swelling accompanied by a permanent loss of synaptic transmission and irreversible dendritic beading, signifying acute damage. Neuronal injury was not triggered by spreading depolarization which did not occur in our experiments. Hypoxia without AGQS did not cause cell swelling, leaving dendrites intact. Inhibition of NMDA receptors prevented neuronal damage and irreversible loss of synaptic function. Deleterious effects of AGQS during hypoxia were prevented by alanine-serine-cysteine transporters (ASCT2) and volume-regulated anion channels (VRAC) blockers. Our findings suggest that astroglial swelling induced by accumulation of non-excitatory AA and release of excitotoxins through antiporters and VRAC may exacerbate the hypoxia-induced neuronal injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474671PMC
http://dx.doi.org/10.1002/glia.24241DOI Listing

Publication Analysis

Top Keywords

neuronal injury
12
amino acids
8
astroglial swelling
8
synaptic function
8
astroglial neuronal
8
neuronal swelling
8
hypoxia agqs
8
loss synaptic
8
neuronal
6
injury
6

Similar Publications

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Objective: Our primary objective was to evaluate the safety and feasibility of transcranial direct current stimulation combined with exercise therapy for the treatment of cervicogenic headache. Our exploratory objectives compared symptoms of headache, mood, pain, and quality of life between active and sham transcranial direct stimulation combined with exercise therapy.

Background: Cervicogenic headache arises from injury to the cervical spine or degenerative diseases impacting cervical spine structure resulting in pain, reduced quality of life, and impaired function.

View Article and Find Full Text PDF

Background: Recent studies have shown that ferroptosis, a newly identified regulated cell death characterized by increased lipid peroxidation and accumulation of toxic lipid peroxides, is closely related to the pathophysiological processes of nervous system diseases which can be inhibited with iron chelators, lipophilic antioxidants, and lipid peroxidation inhibitors.

Objective: To review the current evidence on the efficacy of various natural polyphenols in nervous system injury.

Methods: The data selected for this review were collected by searching the MEDLINE/PubMed, Web of Science, Scopus, and Google Scholar database for articles published in English between 2000 and 2024 using the following terms: cell death, regulated cell death, ferroptosis, lipid peroxides, iron, and glutathione peroxidase.

View Article and Find Full Text PDF

Spinal cord injury (SCI) represents a severe type of central nervous system damage, with no effective treatment currently available, partly due to neuronal ferroptosis and subsequent neuroinflammation. Punicalagin, an anti-inflammatory compound extracted from pomegranate peel, has exhibited therapeutic potential for inflammatory diseases. In this study, we present evidence that punicalagin facilitates the recovery of neurological function following SCI by mitigating neuronal ferroptosis.

View Article and Find Full Text PDF

Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!