Flipped over U: structural basis for dsRNA cleavage by the SARS-CoV-2 endoribonuclease.

Nucleic Acids Res

Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.

Published: August 2022

Coronaviruses generate double-stranded (ds) RNA intermediates during viral replication that can activate host immune sensors. To evade activation of the host pattern recognition receptor MDA5, coronaviruses employ Nsp15, which is a uridine-specific endoribonuclease. Nsp15 is proposed to associate with the coronavirus replication-transcription complex within double-membrane vesicles to cleave these dsRNA intermediates. How Nsp15 recognizes and processes dsRNA is poorly understood because previous structural studies of Nsp15 have been limited to small single-stranded (ss) RNA substrates. Here we present cryo-EM structures of SARS-CoV-2 Nsp15 bound to a 52nt dsRNA. We observed that the Nsp15 hexamer forms a platform for engaging dsRNA across multiple protomers. The structures, along with site-directed mutagenesis and RNA cleavage assays revealed critical insight into dsRNA recognition and processing. To process dsRNA Nsp15 utilizes a base-flipping mechanism to properly orient the uridine within the active site for cleavage. Our findings show that Nsp15 is a distinctive endoribonuclease that can cleave both ss- and dsRNA effectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371922PMC
http://dx.doi.org/10.1093/nar/gkac589DOI Listing

Publication Analysis

Top Keywords

dsrna
8
nsp15
8
flipped structural
4
structural basis
4
basis dsrna
4
dsrna cleavage
4
cleavage sars-cov-2
4
sars-cov-2 endoribonuclease
4
endoribonuclease coronaviruses
4
coronaviruses generate
4

Similar Publications

Expanding the evidence for cross-species viral transmission from trophic interactions of parasitoid wasps and their hosts.

Braz J Microbiol

January 2025

Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, BA, Brazil.

Parasitoid wasps act as natural biological control agents for several harmful insect species. However, there is a lack of information regarding the exogenous RNA viruses that infect parasitoids and may contribute to the success of their parasitism strategies. This study aimed to investigate the presence, abundance, and replication of known exogenous viruses in two parasitoid wasp species and their corresponding preys.

View Article and Find Full Text PDF

An improved reverse genetics system for rotavirus vaccine strain LLR using five plasmid vectors.

J Gen Virol

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Beijing 100052, PR China.

Species A rotaviruses (RVs), which belong to the family and contain a genome of 11 segmented dsRNA segments, are a leading cause of severe acute gastroenteritis in infants and children younger than 5 years of age. We previously developed a strategy to recover rotavirus vaccine strain LLR from 11 cloned plasmids. Here, we report an improved reverse genetics system for LLR by combining two or three transcriptional cassettes in a single plasmid, which substantially enhances rescue efficiency from 66.

View Article and Find Full Text PDF

Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).

View Article and Find Full Text PDF

Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space.

View Article and Find Full Text PDF

Bacteriophage-derived dsRNA (bp-dsRNA), also known as Larifan, is a poly-functional and wide-spectrum antiviral medication with potent interferonogenic activity. In the lungs of golden Syrian hamsters infected with SARS-CoV-2, Larifan substantially reduces viral load and decreases infection-induced pathological lesion severity. Alveolar macrophages (AM) are key sentinel cells in the lung, which play an important role in antiviral innate immune responses and, at the same time, can trigger infection-associated hyper-inflammatory response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!