IL-1 receptor-activated kinase 1 (IRAK1) is involved in signal transduction downstream of many TLRs and the IL-1R. Its potential as a drug target for chronic inflammatory diseases is underappreciated. To study its functional role in joint inflammation, we generated a mouse model expressing a functionally inactive IRAK1 (IRAK1 kinase deficient, IRAK1KD), which also displayed reduced IRAK1 protein expression and cell type-specific deficiencies of TLR signaling. The serum transfer model of arthritis revealed a potentially novel role of IRAK1 for disease development and neutrophil chemoattraction exclusively via its activity in nonhematopoietic cells. Consistently, IRAK1KD synovial fibroblasts showed reduced secretion of neutrophil chemoattractant chemokines following stimulation with IL-1β or human synovial fluids from patients with rheumatoid arthritis (RA) and gout. Together with patients with RA showing prominent IRAK1 expression in fibroblasts of the synovial lining, these data suggest that targeting IRAK1 may be therapeutically beneficial. As pharmacological inhibition of IRAK1 kinase activity had only mild effects on synovial fibroblasts from mice and patients with RA, targeted degradation of IRAK1 may be the preferred pharmacologic modality. Collectively, these data position IRAK1 as a central regulator of the IL-1β-dependent local inflammatory milieu of the joints and a potential therapeutic target for inflammatory arthritis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310529PMC
http://dx.doi.org/10.1172/jci.insight.149825DOI Listing

Publication Analysis

Top Keywords

irak1
10
irak1 kinase
8
synovial fibroblasts
8
nonhematopoietic irak1
4
irak1 drives
4
arthritis
4
drives arthritis
4
arthritis neutrophil
4
neutrophil chemoattractants
4
chemoattractants il-1
4

Similar Publications

DNA damage in cells induces the expression of inflammatory genes. However, the mechanism by which cells initiate an innate immune response in the presence of DNA lesions blocking transcription remains unknown. Here we find that genotoxic stresses lead to an acute activation of the transcription factor NF-κB through two distinct pathways, each triggered by different types of DNA lesions and coordinated by either ataxia-telangiectasia mutated (ATM) or IRAK1 kinases.

View Article and Find Full Text PDF
Article Synopsis
  • Atrial fibrillation (AF) is influenced by both genetics and the environment, and existing genetic studies have identified numerous genes associated with AF, but their functions and interactions remain unclear.
  • Researchers conducted a detailed analysis of 254 AF-associated genes, revealing significant biological pathways related to heart activity and connections to diseases like cancer and inflammation through pathway crosstalk.
  • They also identified 24 novel genes potentially linked to AF, with six showing differential expression in AF patients, suggesting a common genetic basis between AF and other diseases, which could aid in discovering additional AF risk factors.
View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) represents a considerable health challenge, primarily due to its poor prognosis and the limited availability of effective therapeutic interventions. Ubiquitination, a vital post-translational modification, is integral to cellular regulation; nonetheless, its role in ESCC has not been thoroughly explored. This study aims to identify ubiquitination-related differentially expressed genes (URDEGs) that possess prognostic significance in the context of ESCC.

View Article and Find Full Text PDF

Certain somatic mutations provide a fitness advantage to hematopoietic stem cells and lead to clonal expansion of mutant blood cells, known as clonal hematopoiesis (CH). Among the most common CH mutations, ASXL1 mutations pose the highest risk for cardiovascular diseases (CVDs), yet the mechanisms by which they contribute to CVDs are unclear. Here we show that hematopoietic cells harboring C-terminally truncated ASXL1 mutant (ASXL1-MT) accelerate the development of atherosclerosis in Ldlr mice.

View Article and Find Full Text PDF

Lameness is an economically significant, production-limiting syndrome that adversely affects the (re)production performance of animals besides deteriorating the quantity and quality aspects of milk in dairy cattle. The present study aimed to explore the potential biomarkers for painful foot lesions in indigenous Tharparkar and crossbred Vrindavani cattle affected with lameness. The differentially expressed genes in lame versus healthy animals were elucidated using microarray analysis and validated them by qRT-PCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!