A series of novel compounds, mono-5-isoxazolidines, and bis (5-isoxazolidines) derivatives, were prepared as bicycloadducts. The new series of isoxazolidines were designed and synthesized via 1,3-dipolar cycloaddition reaction of nitrones with 3,9-Divinyl-2,4,8,10-tetra oxaspiro (5-5) undecane in the context of new antimicrobial and antioxidant drugs discovery and were fully characterized by FT-IR, C-NMR, and H-NMR spectroscopy. The physicochemical properties of all the novel cycloadducts, like bioactivity score and lipophilicity, were predicted using calculative methods. Similarly, the pharmacokinetic properties such as metabolism, absorption, distribution, and excretion (ADME) were also predicted. Most of the tested compounds exhibited antimicrobial properties to varying degrees against various bacterial species, including the Gram-negative bacteria and , and the Gram-positive bacteria and , Antifungal properties were also observed against the tested fungi like , , and . The activity data exhibited that most compounds have high activity as compared to the standard drugs. In the range of graded doses, the results of some selected compounds revealed that some are high antioxidants while others are moderate or weak antioxidants. As evidenced by the molecular docking studies, the synthesized compounds showed good binding mode better than a standard drug, against the protein of a Pantothenate Synthetase enzyme (PDB-2X3F).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253851 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e09746 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!