The purpose of this study was to see how a nanohydroxyapatite (n-HA) composite polyamide 66 (PA66) affected the repair of bone defects in diabetics with titanium implants, as well as to develop experimental materials for the creation of the interface between bone tissue and titanium implants. Rabbit bone marrow mesenchymal stem cells (MSCs) were isolated using n-HA/PA66 composite material, and the effect of coculture with the material on cell proliferation was analyzed after induction of mineralization. Bone defect models of diabetic experimental rabbits and titanium implants were prepared. Normal rabbits with bone defects were used as control (NC group, = 8). After the diabetic bone defect (DM group, = 8) and the implantation of n-HA/PA66 composite material (n-HA/PA66 group, = 8), the differences in body weight, blood glucose, scanning electron microscopy of the implant-bone interface, bone mineral density, new bone trabecular parameters, histomorphology, and biomechanical properties of the implant-bone interface were compared and analyzed. In vitro test results showed that MSC cell growth could be promoted by mineralization induction, the cell growth condition was good after coculture with n-HA/PA66, and the proliferation activity of MSCs was not affected by the material. In vivo test results showed that the body weight of the DM group and n-HA/PA66 group was considerably inferior to that of the NC group, and the blood glucose was dramatically superior to that of the NC group ( < 0.05). However, the body weight of the n-HA/PA66 group was dramatically superior to that of the DM group ( < 0.05). The bone mineral density, bone volume fraction (BV/TV), bone surface area fraction (BS/BV), bone trabecular thickness (Tb.Th), bone trabecular number (Tb.N), bone trabecular area, and biomechanical properties in the DM group were considerably inferior to those in the NC group and n-HA/PA66 group ( < 0.05). The trabecular space (Tb.Sp) in the NC group and n-HA/PA66 group was dramatically superior to that in the NC group ( < 0.05). The bone mineral density, BV/TV, BS/BV, Tb.Th, Tb.N, trabecular area, and biomechanical properties of the n-HA/PA66 group were dramatically superior to those of the NC group ( < 0.05), while Tb.Sp was considerably inferior to that of the NC group ( < 0.05). These findings showed that the n-HA/PA66 material had good biocompatibility and minimal cytotoxicity, and that filling the space between the surrounding bone and the titanium implant can enhance bone repair. This research paved the way for future research into the tissue-engineered bone in the field of oral surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256423PMC
http://dx.doi.org/10.1155/2022/7459139DOI Listing

Publication Analysis

Top Keywords

n-ha/pa66 group
24
group 005
24
bone
18
group
18
bone trabecular
16
dramatically superior
16
superior group
16
titanium implants
12
body weight
12
bone mineral
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!